[1] 王鸣谦,薛莉,赵珺,等. 世界草莓生产及贸易现状[J]. 中国果树,2021(2):104-108. [2] 肖逸尘,杨涵.南京草莓产业SWOT分析及发展策略[J].中国林业经济,2021(5):74-77. [3] 王粮局,张立博,段运红,等. 基于视觉伺服的草莓采摘机器人果实定位方法[J]. 农业工程学报,2015,31(22):25-31. [4] 林相泽,张俊媛,朱赛华,等.基于K-SVD和正交匹配追踪稀疏表示的稻飞虱图像分类方法[J].农业工程学报,2019,35(19):216-222. [5] 王丹丹,何东健.基于R-FCN深度卷积神经网络的机器人疏果前苹果目标的识别[J].农业工程学报,2019,35(3):156-163. [6] OLANIYI E O, OYEDOTUN O K, ADNAN K.Intelligent grading system for banana fruit using neural network arbitration:Intelligent grading system for banana fruit[J]. Journal of food process engineering, 2017, 40(1):e12335. [7] 谢忠红,徐焕良,黄秋桂,等.基于高光谱图像和深度学习的菠菜新鲜度检测[J].农业工程学报,2019,35(13):277-284. [8] JUNCHENG M, KEMING D, FEIXIANG Z, et al.A recognition method for cucumber diseases using leaf symptom images based on deep convolutional neural network[J]. Computers and electronics in agriculture, 2018, 154:18-24. [9] 胡庆胜,符亚云,牛金星.采摘机器人视觉系统的目标识别提取研究[J].河南科技,2020,39(25):5-8. [10] 闫勇,陈立夫,郭坤坤,等.Lab色彩模型下梯度Hough圆变换的成熟草莓识别[J].安徽农业大学学报,2020,47(3):488-493. [11] 刘小刚,范诚,李加念,等.基于卷积神经网络的草莓识别方法[J].农业机械学报,2020,51(2):237-244. [12] 任会,朱洪前.基于深度学习的目标橘子识别方法研究[J].计算机时代,2021(1):57-60,64. [13] WANG T T, XU L, LI J B.Sdcrkl-gp: Scalable deep convolutional random kernel learning in gaussian process for image recognition[J].Neurocomputing, 2021, 456:288-298. [14] 席芮,姜凯,张万枝,等.基于改进Faster R-CNN的马铃薯芽眼识别方法[J].农业机械学报,2020,51(4):216-223. [15] 张磊,姜军生,李昕昱,等.基于快速卷积神经网络的果园果实检测试验研究[J].中国农机化学报,2020,41(10):183-190,210. [16] ZHONG Z, JIN L,HUANG S.A new approach for text proposal generation and text detection in natural images[A].Ieee international conference on acoustics, speech and signal processing(ICASSP)[C].New Orleans,LA,USA:IEEE,2017.1208-1212. [17] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[A]. Ieee conference on computer vision and pattern recognition[C].Las Vegas,NV,USA:IEEE,2016.770-778. [18] REN S Q, HE KM, GIRSHICK, R, et al.Faster R-CCC: Towards real-time object detection with region proposal networks[J]. Ieee transactions on pattern analysis and machine intelligence,2017,39(6):1137-1149. [19] 张文静,赵性祥,丁睿柔,等.基于Faster R-CNN算法的番茄识别检测方法[J].山东农业大学学报(自然科学版),2021,52(4):624-630. [20] 岳有军,孙碧玉,王红君,等.基于级联卷积神经网络的番茄果实目标检测[J].科学技术与工程,2021,21(6):2387-2391. [21] 陈怡佳. 基于Faster RCNN的目标检测系统[D]. 哈尔滨:哈尔滨理工大学,2019. [22] 荆伟斌,李存军,竞霞,等.基于深度学习的苹果树侧视图果实识别[J].中国农业信息,2019,31(5):75-83. [23] 闫建伟,赵源,张乐伟,等.改进Faster-RCNN自然环境下识别刺梨果实[J].农业工程学报,2019,35(18):143-150. [24] 倪建功,李娟,邓立苗,等.基于知识蒸馏的胡萝卜外观品质等级智能检测[J].农业工程学报,2020,36(18):181-187. [25] 成伟,张文爱,冯青春,等.基于改进YOLOv3的温室番茄果实识别估产方法[J].中国农机化学报,2021,42(4):176-182. [26] 彭明霞,夏俊芳,彭辉. 融合FPN的Faster R-CNN复杂背景下棉田杂草高效识别方法[J]. 农业工程学报,2019,35(20):202-209. [27] 李林升,曾平平.改进深度学习框架Faster-RCNN的苹果目标检测[J].机械设计与研究,2019,35(5):24-27. [28] LI W Y,WANG D J,LI M,et al.Field detection of tiny pests from sticky trap images using deep learning in agricultural greenhouse[J]. Computers and electronics in agriculture,2021,183: 106048. [29] SENGUPTA S, LEE W S.Identification and determination of the number of immature green citrus fruit in a canopy under different ambient light conditions[J]. Biosystems engineering, 2014, 117: 51-61. [30] 赵辉,乔艳军,王红君,等.基于改进YOLOv3的果园复杂环境下苹果果实识别[J].农业工程学报,2021,37(16):127-135. |