[1] 赵彦茜,肖登攀,唐建昭,等.气候变化对我国主要粮食作物产量的影响及适应措施[J].水土保持研究,2019,26(6):317-326. [2] 刘杰,曾娟,杨清坡,等.2023年农作物重大病虫害发生趋势预报[J].中国植保导刊,2023,43(1):32-35. [3] 翟肇裕,曹益飞,徐焕良,等.农作物病虫害识别关键技术研究综述[J].农业机械学报,2021,52(7):1-18. [4] SUYKENS J, VANDEWALLE J.Least squares support vector machine classifiers[J]. Neural processing letters,1999,9(3):293-300. [5] CORTES C, VAPNIK V.Support-vector networks[J]. Machine learning, 1995, 20(3): 273-297. [6] SARO J,KAVIT A.Review:Study on simple K-mean and modified K-mean clustering technique[J].International journal of computer science engineering and technology,2016,6(7):279-281. [7] PEARSON K.On lines and planes of closest fit to systems of points in space[J]. Philosophical magazine,1901,2(11),559-572. [8] 郑建华,朱立学,朱蓉.基于多特征融合与支持向量机的葡萄病害识别[J].现代农业装备,2018(6):54-60. [9] 雷雨,韩德俊,曾庆东,等.基于高光谱成像技术的小麦条锈病病害程度分级方法[J].农业机械学报,2018,49(5):226-232. [10] 乔雪,潘新,王欣宇,等.基于G-R分量与K-means的马铃薯病虫害图像分割[J].内蒙古农业大学学报(自然科学版),2021,42(3):84-87. [11] 何怀文,蔡显华,杨毅红.基于深度学习的园林植物病虫害智能识别系统[J].现代计算机,2022,28(15):112-116. [12] 高雨亮. 基于深度学习的水稻病虫害识别系统设计与实现[D].江苏扬州:扬州大学,2022. [13] 赵越,赵辉,姜永成,等.基于深度学习的马铃薯叶片病害检测方法[J].中国农机化学报,2022,43(10):183-189. [14] SCHMIDHUBER J.Deep learning in neural networks:An overview[J]. Neural networks,2014,61:85-117. [15] LESHNO M, LIN V Y,PINKUS A,et al.Multilayer feedforward networks with a nonpolynomial activation function can approximate any function[J].Neural networks,1993,6(6):861-867. [16] DU X,VASUDEVAN R, JOHNSON-ROBERSON M.Bio-LSTM: A biomechanically inspired recurrent neural network for 3-D pedestrian pose and gait prediction[J].IEEE robotics and automation letters, 2019, 4(2):1501-1508. [17] TETILA E C, MACHADO B B, MENEZES G K, et al.Automatic recognition of soybean leaf diseases using UAV images and deep convolutional neural networks[J]. IEEE geoscience and remote sensing letters, 2019, 17(5):903-907. [18] 李子涵,周省邦,赵戈,等.基于卷积神经网络的农业病虫害识别研究综述[J].江苏农业科学,2023,51(7):15-23. [19] 郑丽丽. 基于决策树与卷积神经网络的害虫识别算法[J].洛阳师范学院学报,2020,39(5):32-35. [20] 魏超,范自柱,张泓,等.基于深度学习的农作物病害检测[J].江苏大学学报(自然科学版),2019,40(2):190-196. [21] 姚建斌,张英娜,刘建华.基于卷积神经网络和迁移学习的小麦病虫害识别[J].华北水利水电大学学报(自然科学版),2022,43(2):102-108. [22] LECUN Y, BOTTOU L, BENGIO Y, et al.Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. [23] 何前,郭峰林,方皓正,等.基于改进LeNet-5模型的玉米病害识别[J].江苏农业科学,2022,50(20):35-41. [24] 张善文,谢泽奇,张晴晴.卷积神经网络在黄瓜叶部病害识别中的应用[J].江苏农业学报,2018,34(1):56-61. [25] LIANG W J, ZHANG H, ZHANG G F,et al.Rice blast disease recognition using a deep convolutional neural network[J]. Scientific reports,2019,9(2):217-223. [26] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[EB/OL].https://blog.csdn.net/weixin_36670529/article/details/99976379,2022-09-12. [27] BRAHIM I, BOUKHAL F A, MOUSSAOU I.Deep learning for tomato diseases: Classification and symptoms visualization[J]. Applied artificial intelligence, 2017, 31(4): 299-315. [28] 杨国国,鲍一丹,刘子毅.基于图像显著性分析与卷积神经网络的茶园害虫定位与识别[J]. 农业工程学报,2017,33(6):156-162. [29] 刘婷婷,王婷,胡林.基于卷积神经网络的水稻纹枯病图像识别[J].中国水稻科学,2019,33(1):90-94. [30] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].https://blog.csdn.net/weixin_36670529/article/details/102961210,2022-06-16. [31] 鲍文霞,吴刚,胡根生,等.基于改进卷积神经网络的苹果叶部病害识别[J].安徽大学学报(自然科学版),2021,45(1):53-59. [32] 周云成,许童羽,郑伟,等.基于深度卷积神经网络的番茄主要器官分类识别方法[J].农业工程学报,2017,33(15):219-226. [33] HE K M, ZHANG X Y, REN S Q, et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE transactions on pattern analysis and machine intelligence, 2014,37(9):1904-1916. [34] 计雪伟,霍兴赢,薛端,等.基于深度学习的农作物病虫害识别方法[J].南方农机,2020,51(23):182-183. [35] 王春山,周冀,吴华瑞,等.改进Multi-scale ResNet的蔬菜叶部病害识别[J].农业工程学报,2020,36(20):209-217. [36] MARRIAM N, TAHIRA N, ALI J, et al.A robust deep learning approach for tomato plant leaf disease localization and classification[J]. Scientific reports,2022,12(1):1-18. [37] CAO F K,BAI T,XU X L.Vehicle detection and classification based on highway monitoring video[J].Computer systems & applications,2020,29(10):267-273. [38] MOHANTY S P, HUGHES D P, SALATHE M.Using deep learning for image-based plant disease detection[J]. Frontiers in plant science,2016,7:1419-1437. [39] ZHANG X H, QIAO Y, MENG F F, et al.Identification of maize leaf diseases using improved deep convolutional neural networks[J]. IEEE sccess,2018,6:30370-30377. [40] ASHRAFUL H, SUDEEP M, CHANDAN K D, et al.Deep learning-based approach for identification of diseases of maize crop[J]. Scientific reports,2022,12:10140. [41] HOWARD A G,ZHU M,CHEN B,et al. MobileNets:Efficient convolutional neural networks for mobile vision applications[J/OL].https://blog.csdn.net/qq_41200212/article/details/129598358,2023-04-11. [42] SANDLER M, HOWARD A, ZHU M, et al. MobileNet V2: Inverted residuals and linear bottlenecks[EB/OL].https://blog.csdn.net/qq_40243750/article/details/126651115,2022-09-01. [43] 王哲豪,范丽丽,何前.基于MobileNet V2和迁移学习的番茄病害识别[J].江苏农业科学,2023,51(9):215-221. [44] 孙俊,朱伟栋,罗元秋,等.基于改进MobileNet-V2 的田间农作物叶片病害识别[J].农业工程学报,2021,37(22):161-169. |