[1] 何蔓, 张军岩. 全球土地利用与覆盖变化(LUCC) 研究及其进展[J]. 国土资源, 2005(9): 22-25. [2] 郑明雪,沈祥成,罗治情,等. 类城市路网空间中面向平原农业应用的耕地地块边界提取研究[J]. 湖北农业科学, 2022, 61(23):184-189. [3] 蔡志文, 何真, 王文静, 等. 基于多源国产高分卫星时空信息的米级分辨率耕地提取[J].遥感学报,2022,26(7):1368-1382. [4] 韩衍欣, 蒙继华. 面向地块的农作物遥感分类研究进展[J]. 自然资源遥感, 2019, 31(2): 1-9. [5] 吴晗,林晓龙,李曦嵘, 等. 面向农业应用的无人机遥感影像地块边界提取[J]. 计算机应用, 2019, 39(1): 298-304. [6] 李倩楠, 张杜娟,潘耀忠, 等. MPSPNet和UNet网络下山东省高分辨耕地遥感提取[J].遥感学报,2023,27(2):471-491. [7] JULIEN Y, SOBRINO J A, JIMENEZ-MUNOZ J C. Land use classification from multitemporal Landsat imagery using the yearly land cover dynamics (YLCD) method[J]. International journal of applied earth observation and geoinformation,2011,13(5): 711-720. [8] HERNANDEZ I E, SHI W.A random forests classification method for urban land-use mapping integrating spatial metrics and texture analysis[J]. International journal of remote sensing, 2018, 39(4): 1175-1198. [9] 李昌俊, 黄河, 李伟. 基于支持向量机的农业遥感图像耕地提取技术研究[J]. 仪表技术, 2018 (11): 5-8. [10] 杨先增, 周亚男, 张新, 等. 融合边缘特征与语义信息的人工坑塘精准提取方法[J]. 地球信息科学学报,2022,24(4): 766-779. [11] 王振庆, 周艺, 王世新, 等. IEU-Net 高分辨率遥感影像房屋建筑物提取[J]. 遥感学报, 2021, 25(11): 2245-2254. [12] 何红术, 黄晓霞, 李红旮, 等. 基于改进U-Net 网络的高分遥感影像水体提取[J]. 地球信息科学学报, 2020, 22(10): 2010-2022. [13] YANG X,LI X, YE Y, et al.Road detection and centerline extraction via deep recurrent convolutional neural network U-Net[J]. IEEE transactions on geoscience and remote sensing,2019,57(9):7209-7220. [14] DU Z, YANG J, OU C, et al.Smallholder crop area mapped with a semantic segmentation deep learning method[J]. Remote sensing, 2019, 11(7): 888. [15] CHEN L C, ZHU Y, PAPANDREOU G, et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[A].Proceedings of the European conference on computer vision[C]. Berlin: Springer,2018.801-818. [16] ZHANG D,PAN Y, ZHANG J, et al.A generalized approach based on convolutional neural networks for large area cropland mapping at very high resolution[J]. Remote sensing of environment, 2020, 247.DOI:10.1016/j.rse.2020.111912. [17] 陈玲玲, 施政, 廖凯涛, 等. 基于卷积神经网络的高分遥感影像耕地提取研究[J].农业机械学报,2022,53(9):168-177. [18] RONNEBERGER O,FISCHER P,BROX T.U-Net:Convolutional networks for biomedical image segmentation[A].International con-ferenceon medical image computing and computer-assisted inter-vention[C]. Munich:Springer,2015.234-241. [19] HE K, ZHANG X, REN S, et al.Deep residual learning for image recogition[A]. Proceedings of the IEEE conference on computer vision and pattern recognition[C]. Piscataway:IEEE,2016.770-778. [20] WOO S,PARK J,LEE J,et al.CBAM: Convolutional block attention module[A]. Proceedings of the European conference on computer vision[C]. Berlin: Springer,2018.3-19. [21] FU J, LIU J, TIAN H, et al.Dual attention network for scene segmentation[A]. Proceedings of the IEEE conference on computer vision and pattern recognition[C]. Piscataway:IEEE 2019.3146-3154. |