[1] KLOTZ M G, BRYANT D A, HANSON T E.The microbial sulfur cycle[J]. Frontiers in microbiology,2011,2.DOI: 10.3389/fmicb. 2011.00241. [2] HOFER U.Environmental microbiology: New diversity in the sulfur cycle[J]. Nature reviews microbiology, 2018, 16(5): 260-261. [3] ZHANG K, ZHENG X, HE Z, et al.Fish growth enhances microbial sulfur cycling in aquaculture pond sediments[J]. Microb biotechnol, 2020, 13(5): 1597-1610. [4] VOGEL M B, DES MARAIS D J, TURK K A, et al. The role of biofilms in the sedimentology of actively forming gypsum deposits at Guerrero Negro, Mexico[J]. Astrobiology, 2009, 9: 875-893. [5] TRIPATHI A K, THAKUR P, SAXENA P, et al.Gene sets and mechanisms of sulfate-reducing bacteria biofilm formation and quorum sensing with impact on corrosion[J]. Frontiers in microbiology, 2021, 12. DOI:10.3389/fmicb.2021.754140. [6] WOOD T K.Biofilm dispersal: Deciding when it is better to travel[J]. Molecular microbiology, 2014, 94(4): 747-750. [7] SAXENA P, JOSHI Y, RAWAT K, et al.Biofilms:Architecture, resistance, quorum sensing and control mechanisms[J]. Indian journal of microbiology, 2019, 59(1): 3-12. [8] MUKHERJEE S, BASSLER B L.Bacterial quorum sensing in complex and dynamically changing environments[J]. Nature reviews microbiology, 2019, 17(6): 371-382. [9] TOBIAS N J, BREHM J, KRESOVIC D, et al.New vocabulary for bacterial communication[J]. Chem Bio Chem,2020,21(6):759-768. [10] NASSER W, REVERCHON S.New insights into the regulatory mechanisms of the LuxR family of quorum sensing regulators[J]. Analytical and bioanalytical chemistry, 2007, 387(2): 381-390. [11] VENTURI V, AHMER B M.LuxR solos are becoming major players in cell-cell communication in bacteria[J]. Cellular & infection microbiology, 2015, 5.DOI: 10.3389/fcimb.2015.00089. [12] XU Y N, CHEN Y.Advances in heavy metal removal by sulfate-reducing bacteria[J]. Water science & technology, 2020, 81(9): 1797-1827. [13] SCARASCIA G, LEHMANN R, MACHUCA L L, et al.Quorum sensing effect on the ability of Desulfovibrio vulgaris to form biofilm and to biocorrode carbon steel in saline conditions[J]. Applied and environmental microbiology,2019,86(1).DOI:10.1128/AEM.01664-19. [14] SCARASCIA G, WANG T, HONG P Y.Quorum sensing and the use of quorum quenchers as natural biocides to inhibit sulfate-reducing bacteria[J]. Antibiotics, 2016, 5(4). DOI:10.3390/antibiotics5040039. [15] HEIDELBERG J F, SESHADRI R, HAVEMAN S A, et al.The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough[J]. Nature biotechnology, 2004, 22(5): 554-559. [16] ZHU L, POOSARLA V G, SONG S, et al.Glycoside hydrolase DisH from Desulfovibrio vulgaris degrades the N-acetylgalactosamine component of diverse biofilms[J]. Environmental microbiology, 2018, 20(6): 2026-2037. [17] ZHU L, GONG T, WOOD T L, et al.Sigma54 -dependent regulator DVU2956 switches Desulfovibrio vulgaris from biofilm formation to planktonic growth and regulates hydrogen sulfide production[J]. Environmental microbiology, 2019, 21(10): 3564-3576. [18] WILKINS M R, GASTEIGER E, BAIROCH A, et al.Protein identification and analysis tools in the ExPASy server[J]. Methods Mol Biol, 1999, 112: 531-552. [19] HARALDSON M H, KIEHL E N, PETERSEN B, et al.NetSurfP-3.0: Accurate and fast prediction of protein structural features by protein language models and deep learning[J]. Nucleic acids research, 2022, 50(W1): W510-W515. [20] WATERHOUSE A, BERTONI M, BIENERT S, et al.SWISS-MODEL: Homology modelling of protein structures and complexes[J]. Nucleic acids research, 2018, 46(W1): 296-303. [21] TEUFEL F, ARMENTEROS J J A, JOHANSEN A R, et al. SignalP 6.0 predicts all five types of signal peptides using protein language models[J]. Nature biotechnology, 2022,40(7):1023-1025. [22] KROGH A, LARSSON B, VON HEIJNE G, et al.Predicting transmembrane protein topology with a hidden markov model: Application to complete genomes[J]. Journal of molecular biology, 2001, 305(3): 567-580. [23] MILLER M L, SOUFI B, JERS C, et al.NetPhosBac—A predictor for Ser/Thr phosphorylation sites in bacterial proteins[J]. Proteomics, 2009, 9(1): 116-125. [24] MADEIRA F, PEARCE M, TIVEY A R N, et al. Search and sequence analysis tools services from EMBL-EBI in 2022[J]. Nucleic acids research, 2022, 50(W1): 276-279. [25] CAPELLA-GUTIERREZ S, SILLA-MARTINEZ J M, GABALDON T. TrimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses[J]. Bioinformatics, 2009, 25(15).DOI:10.1093/bioinformatics/btp348. [26] KUMAR S, STECHER G, LI M, et al.MEGA X: Molecular evolutionary genetics analysis across computing platforms[J]. Molecular biology and evolution, 2018, 35(6): 1547-1549. [27] KAWAGUCHI T, CHEN Y P, NORMAN R S, et al.Rapid screening of quorum-sensing signal N-acyl homoserine lactones by an in vitro cell-free assay[J]. Applied and environmental microbiology, 2008, 74(12): 3667-3671. [28] WILLIAMSON L L, BORLEE B R, SCHLOSS P D, et al.Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing biosensor[J]. Applied and environmental microbiology, 2005, 71(10): 6335-6344. [29] 苟绍华, 尹婷, 吴雁, 等. 注水开发污水中硫酸盐还原菌抑制剂研究进展[J]. 精细化工, 2015, 32(5): 481-486. [30] 王晶, 王欣, 呼文财, 等. 三嗪类脱硫剂对某油田硫酸盐还原菌的影响研究[J]. 石油化工应用, 2019, 38(5): 85-87,94. [31] 罗雅, 董文艺, 吴华财. 原位投加氧化剂去除河道污染底泥黑臭的研究[J]. 水利水电技术, 2012, 43(8): 28-33. [32] KUMAR M, NANDI M, PAKSHIRAJAN K.Recent advances in heavy metal recovery from wastewater by biogenic sulfide precipitation[J]. Journal of environmental management, 2021, 278.DOI:10.1016/j.jenvman.2020.111555. |