[1] 邢文凯, 刘建, 刘燊, 等. 猪基因组选择育种研究进展[J]. 中国畜牧杂志, 2021, 57(7): 31-37. [2] 王塑天, 孟繁明, 李剑豪. 广东猪种质资源利用与育种生物技术创新[J]. 广东农业科学, 2020, 47(12): 134-143. [3] 杨厚德. 猪育种存在的问题及育种方式的选择[J]. 湖北畜牧兽医, 2020, 41(11): 28-29. [4] 郭应威, 孙珂欣, 田晨, 等. 分子标记技术在绵羊育种中的应用现状分析[J]. 中国畜牧兽医, 2018, 45(12): 3505-3512. [5] 任慧波, 朱吉, 崔清明, 等. 猪育种技术研究进展[J]. 养猪, 2020(4): 61-64. [6] 李国玲,徐志谦,杨化强,等. 转基因和基因编辑猪的研究进展[J]. 华南农业大学学报, 2019, 40(5): 91-101. [7] BARMAN A, DEB B, CHAKRABORTY S.A glance at genome editing with CRISPR-Cas9 technology[J]. Curr Genet,2020, 66(3): 447-462. [8] 王紫君,任红艳,肖红卫,等. CRISPR/Cas9基因编辑技术介导SST基因敲除细胞的制备[J].江西农业学报,2020,32(8):70-75. [9] HUANG J, WANG A T, HUANG C, et al.Generation of marker-free pbd-2 knock-in pigs using the CRISPR/Cas9 and Cre/loxP systems[J]. Genes (Basel), 2020, 11(8):951. [10] PORTO E M, KOMOR A C, SLAYMAKER I M, et al.Base editing: Advances and therapeutic opportunities[J]. Nat Rev Drug Discov, 2020, 19(12): 839-859. [11] LI G L, YANG S X, WU Z F, et al.Recent developments in enhancing the efficiency of CRISPR/Cas9- mediated knock-in in animals[J]. Hereditas(Beijing), 2020, 42(7): 641-656. [12] 孙德林. 聚焦“两会”促进生猪产业高质量发展[J]. 猪业科学, 2021, 38(3): 126-127. [13] ZHU X X, ZHAN Q M, WEI Y Y, et al.CRISPR/Cas9-mediated MSTN disruption accelerates the growth of Chinese Bama pigs[J]. Reprod Domest Anim, 2020, 55(10): 1314-1327. [14] 彭定威, 李瑞强, 曾武, 等. 编辑MSTN半胱氨酸节基元促进两广小花猪肌肉生长[J]. 遗传, 2021, 43(3): 261-270. [15] WANG K,TANG X, XIE Z, et al.CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs[J]. Transgenic Res, 2017, 26(6): 799-805. [16] PATEL A K, SHAH R K, PATEL U A, et al.Goat activin receptor type IIB knockdown by muscle specific promoter driven artificial microRNAs[J]. J Biotechnol, 2014, 187: 87-97. [17] BHATTACHARYA T K, SHUKLA R, CHATTERJEE R N, et al.Comparative analysis of silencing expression of myostatin (MSTN) and its two receptors (ACVR2A and ACVR2B) genes affecting growth traits in knock down chicken[J]. Sci Rep, 2019, 9(1): 7789. [18] ZHENG Q, LIN J, HUANG J, et al.Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity[J/OL]. Proc Natl Acad Sci U S A, 2017,114(45):E9474-E9482. [19] PAN J, TAO C, CAO C, et al.Adipose lipidomics and RNA-Seq analysis revealed the enhanced mitochondrial function in UCP1 knock-in pigs[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2019, 1864(10): 1375-1383. [20] 张鑫,王宇波,黄志清,等. 猪肉品质营养调控的研究进展[J]. 动物营养学报, 2020, 32(10): 4555-4564. [21] TANG F, YANG X, LIU D, et al.Co-expression of fat1 and fat2 in transgenic pigs promotes synthesis of polyunsaturated fatty acids[J]. Transgenic Res, 2019, 28(3-4): 369-379. [22] GU H, ZHOU Y, YANG J, et al.Targeted overexpression of PPARγ in skeletal muscle by random insertion and CRISPR/Cas9 transgenic pig cloning enhances oxidative fiber formation and intramuscular fat deposition[J]. FASEB J, 2021, 35(2): e21308. [23] JUSZCZUK-KUBIAK E, WYSZYŃSKA-KOKO J, WICIŃSKA K, et al. A novel polymorphisms in intron 12 of the bovine calpastatin gene[J]. Mol Biol Rep, 2008, 35(1): 29-35. [24] 张富林, 杨洋, 杨启会, 等. 从江香猪CAST基因的组织时序表达规律分析[J]. 中国畜牧杂志, 2021, 57(6): 164-167,204. [25] ZENG Q, LI N, PAN X F, et al.Clinical management and treatment of obesity in China[J]. Lancet diabetes endocrinol, 2021, 9(6): 393-405. [26] DENG B, ZHANG F, WEN J, et al.The transcriptomes from two adipocyte progenitor cell types provide insight into the differential functions of MSTN[J]. Genomics, 2020, 112(5): 3826-3836. [27] ZHANG Y, ZHANG J, GONG H, et al.Genetic correlation of fatty acid composition with growth, carcass, fat deposition and meat quality traits based on GWAS data in six pig populations[J]. Meat Sci, 2019, 150: 47-55. [28] ZHANG M, CAI G, ZHENG E, et al.Transgenic pigs expressing β-xylanase in the parotid gland improve nutrient utilization[J]. Transgenic Res, 2019, 28(2): 189-198. [29] ZHANG X, LI Z, YANG H, et al.Novel transgenic pigs with enhanced growth and reduced environmental impact[J]. Elife, 2018, 7: e34286. [30] MIAO Y, MEI Q, FU C, et al.Genome-wide association and transcriptome studies identify candidate genes and pathways for feed conversion ratio in pigs[J]. BMC Genomics, 2021, 22(1): 294. [31] PRATHER R S, WELLS K D, Whitworth K M, et al.Knockout of maternal CD163 protects fetuses from infection with porcine reproductive and respiratory syndrome virus (PRRSV)[J]. Sci Rep, 2017, 7(1): 13371. [32] GUO C, WANG M, ZHU Z, et al.Highly efficient generation of pigs harboring a partial deletion of the CD163 SRCR5 Domain, which are fully resistant to porcine reproductive and respiratory syndrome virus 2 infection[J]. Front immunol,2019,10:1846. [33] YU P, WEI R, DONG W, et al.CD163(ΔSRCR5) MARC-145 cells resist PRRSV-2 infection via inhibiting virus uncoating, which requires the interaction of CD163 with calpain 1[J]. Front microbiol, 2019, 10: 3115. [34] XU K, ZHOU Y, MU Y, et al.CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance[J]. Elife, 2020, 9: e57132. [35] CUI J, TECHAKRIENGKRAI N, NEDUMPUN T, et al.Abrogation of PRRSV infectivity by CRISPR-Cas13b-mediated viral RNA cleavage in mammalian cells[J]. Sci Rep, 2020, 10(1): 9617. [36] LI D,LEI C,XU Z,et al.Foot-and-mouth disease virus non-structural protein 3A inhibits the interferon-β signaling pathway[J]. Sci Rep, 2016, 6: 21888. [37] 史喜绢, 刘原子, 张大俊, 等. 猪源组织蛋白酶S抑制O型口蹄疫病毒在PK-15细胞复制[J]. 畜牧兽医学报, 2021, 52(6): 1652-1661. [38] 王妍鳕, 任亭亭, 孙跃峰, 等. 利用CRISPR/Cas9系统构建SBNO2基因敲除细胞系及其功能研究[J]. 甘肃农业大学学报, 2021, 56(1): 22-28. [39] ABDULLAH S W, HAN S, WU J, et al.The DDX23 negatively regulates translation and replication of foot-and-mouth disease virus and is degraded by 3C proteinase[J]. Viruses, 2020,12(12):1348. [40] XIE Z,JIAO H, XIAO H, et al.Generation of RSAD2 gene knock-in pig via CRISPR/Cas9 technology[J]. Antiviral Res,2020, 174: 104696. [41] HUANG Y, LI Z, SONG C, et al.Resistance to pseudorabies virus by knockout of nectin1/2 in pig cells[J]. Arch Virol, 2020, 165(12): 2837-2846. [42] 马英先, 常雯茹, 张爽, 等. 含半胱氨酸的天冬氨酸蛋白水解酶(caspase-1)对猪伪狂犬病毒复制的影响[J]. 病毒学报, 2021, 37(1): 159-168. [43] 翟云云, 李佳佳, 张爽, 等. 凋亡相关斑点样蛋白敲除PK-15细胞系的建立及对PRV感染的影响[J]. 畜牧兽医学报, 2021, 52(2): 478-487. [44] 刘晓贺, 巴根, 李坚, 等. PK-15细胞敲除TANK结合激酶1基因促进猪伪狂犬病病毒复制的研究[J]. 畜牧兽医学报, 2019, 50(6): 1239-1248. [45] 侯璐,王一,张爽,等. 干扰素基因刺激因子基因敲除对猪伪狂犬病病毒复制的影响[J]. 畜牧兽医学报,2019,50(11): 2273-2282. [46] MIŁEK D, WOŹNIAK A, GUZOWSKA M, et al. Detection patterns of porcine parvovirus (PPV) and novel porcine parvoviruses 2 through 6 (PPV2-PPV6) in Polish Swine Farms[J]. Viruses, 2019, 11(5):474. [47] WALKER L R, ENGLE T B, VU H, et al.Synaptogyrin-2 influences replication of porcine circovirus 2[J]. PLoS Genet, 2018, 14(10): e1007750. [48] WANG S, REN X, LI J, et al.NAP1L4 inhibits porcine circovirus type 2 replication via IFN-β signaling pathway[J]. Vet Microbiol, 2020, 246: 108692. [49] WANG T, DU Q, WU X, et al.Porcine MKRN1 modulates the replication and pathogenesis of porcine circovirus type 2 by inducing capsid protein ubiquitination and degradation[J]. J Virol, 2018, 92(11): e00100-18. [50] 王慧媛,刘晓,薛淮,等. 完善安全管理,促进基因编辑作物的科技与产业发展[J]. 植物生理学报,2020,56(11):2317-2328. |