HUBEI AGRICULTURAL SCIENCES ›› 2021, Vol. 60 ›› Issue (23): 8-14.doi: 10.14088/j.cnki.issn0439-8114.2021.23.002
Previous Articles Next Articles
HUANG Jin, LI Yong, YU Cui, ZHU Zhi-xian, MO Rong-li, DONG Zhao-xia, HU Xing-ming, DENG Wen
Received:
2021-09-17
Online:
2021-12-10
Published:
2021-12-21
CLC Number:
HUANG Jin, LI Yong, YU Cui, ZHU Zhi-xian, MO Rong-li, DONG Zhao-xia, HU Xing-ming, DENG Wen. Gene editing technology and its application prospects in mulberry breeding[J]. HUBEI AGRICULTURAL SCIENCES, 2021, 60(23): 8-14.
[1] | 买买提依明,夏庆友,吴丽莉,等.新疆沙漠桑树的研究现状与发展方向[J].北方蚕业,2007(2):1-4. |
[2] | 周建华. 湖北省蚕桑产业发展回顾与展望[J].湖北农业科学,2017,56(15):2880-2882,2887. |
[3] | 侯韶敏. 桑树经济价值及播种育苗技术[J].山西林业,2021(2):32-33. |
[4] | AGARWAL S, KANWAR K.Comparison of genetic transformation in Morus alba L. via different regeneration systems[J]. Plant cell reports,2007,26(2):177-85. |
[5] | 郑红艳,王磊.CRISPR/Cas基因编辑技术及其在作物育种中的应用[J].生物技术进展,2018,8(3):185-190. |
[6] | 左鑫,李欣容,李铭铭,等.基因编辑技术及其在药用植物中的应用展望[J].中国现代中药,2020,22(12):2108-2114,2121. |
[7] | KIM Y G, CHA J, CHANDRASEGARAN S.Hybrid restriction enzymes:Zinc finger fusions to Fok I cleavage domain[J]. Proceedings of the national academy of sciences of the United States of America,1996,93(3):1156-1160. |
[8] | CHRISTIAN M, CERMAK T, DOYLE E L, et al.Targeting DNA double-strand breaks with TAL effector nucleases[J]. Genetics,2010,186(2):757-761. |
[9] | JINEK M, CHYLINSKI K, FONFARA I, et al.A programmable Dual-RNA-Guided DNA endonuclease in adaptive bacterial immunity[J]. Science,2012,337(6096):816-821. |
[10] | ZHANG Y, MASSEL K, GODWIN ID, et al.Applications and potential of genome editing in crop improvement[J]. Genome biology,2018,19(1):210. |
[11] | DOUDNA J A, CHARPENTIER E.The new frontier of genome engineering with CRISPR-Cas9[J]. Science,2014,346(6213):1258096. |
[12] | URNOV F D, REBAR E J, HOLMES M C, et al.Genome editing with engineered Zinc finger nucleases[J]. Nature reviews genetics,2010,11(8):636-46. |
[13] | CHUGUNOVA A A, DONTSOVA O A, SERGIEV P V.Methods of genome engineering: A new era of molecular biology[J]. Biochemistry (Moscow),2016,81(7):662-677. |
[14] | MANI M, KANDAVELOU K, DY F J, et al.Design, engineering, and characterization of Zinc finger nucleases[J]. Biochemical and biophysical research communications,2005,335(2):447-57. |
[15] | CHEN K, WANG Y, ZHANG R,et al.CRISPR/Cas genome editing and precision plant breeding in agriculture[J]. Annual review of plant biology,2019,70:667-697. |
[16] | CARROLL D.Progress and prospects: Zinc-finger nucleases as gene therapy agents[J]. Gene therapy,2008,15(22):1463-1468. |
[17] | ALEXANDER W G.A history of genome editing in Saccharomyces cerevisiae[J]. Yeast,2018,35(5):355-360. |
[18] | BOGDANOVE A J, SCHORNACK S, LAHAYE T.TAL effectors:Finding plant genes for disease and defense[J]. Current opinion in plant biology,2010,13(4):394-401. |
[19] | MOSCOU M J, BOGDANOVE A J.A simple cipher governs DNA recognition by TAL effectors[J]. Science,2009,326(5959):1501. |
[20] | CONG L,RAN F A,COX D,et al.Multiplex genome engineering using CRISPR/Cas systems[J]. Science,2013,339(6121):819-823. |
[21] | MAKAROVA K S,HAFT D H,BARRANGOU R,et al.Evolution and classification of the CRISPR-Cas systems[J]. Nature reviews microbiology,2011,9(6):467-477. |
[22] | MAKAROVA K S, KOONIN E V.Annotation and classification of CRISPR-Cas systems[J]. Methods in molecular biology (Clifton, N.J.),2015,1311:47-75. |
[23] | KOONIN E V, MAKAROVA K S, ZHANG F.Diversity, classification and evolution of CRISPR-Cas systems[J]. Current opinion in microbiology,2017,37:67-78. |
[24] | NISHIMASU H,RAN F A,HSU P D,et al.Crystal structure of Cas9 in complex with guide RNA and target DNA[J]. Cell,2014,156(5):935-949. |
[25] | GASIUNAS G,BARRANGOU R,HORVATH P,et al.Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proceedings of the national academy of sciences of the United States of America,2012,109(39):E2579-86. |
[26] | MARRAFFINI L A, SONTHEIMER E J.Self versus non-self discrimination during CRISPR RNA-directed immunity[J]. Nature,2010,463(7280):568-571. |
[27] | BARRANGOU R,FREMAUX C,DEVEAU H,et al.CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science,2007,315:1709-1712. |
[28] | WIEDENHEFT B, STERNBERG S H, DOUDNA JA.RNA-guided genetic silencing systems in bacteria and archaea[J]. Nature, 2012,482(7385):331-338. |
[29] | STERNBERG S, HREDDING S, JINEK M, et al.DNA interrogation by the CRISPR RNA-guided endonuclease Cas9[J]. Biophysical journal,2014,106(2):695a. |
[30] | 包爱科,白天惠,赵天璇,等.CRISPR/Cas9系统:基因组定点编辑技术及其在植物基因功能研究中的应用[J].草业学报,2017,26(7):190-200. |
[31] | 刘耀光,李构思,张雅玲,等.CRISPR/Cas植物基因组编辑技术研究进展[J].华南农业大学学报,2019,40(5):38-49. |
[32] | ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al.Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3):759-771. |
[33] | MAHFOUZ M M.Genome editing: The efficient tool CRISPR-Cpf1[J]. Nat plants, 2017, 3:17028. |
[34] | SHMAKOV S, ABUDAYYEH O O, MAKAROVA K S, et al.Discovery and functional characterization of diverse class 2 CRISPR-Cas systems[J]. Molecular cell,2015,60(3):385-397. |
[35] | 陈赢男,陆静.CRISPR/Cas9系统在林木基因编辑中的应用[J].遗传,2020,42(7):657-668. |
[36] | SHAN Q W, WANG Y P, LI J, et al.Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nature biotechnology,2013,31(8):686-688. |
[37] | XU R, YANG Y, QIN R, et al.Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice[J]. Journal of genetics and genomics,2016,43(8):529-532. |
[38] | ZHOU J P, XIN X H, HE Y, et al.Multiplex QTL editing of grain-related genes improves yield in elite rice varieties[J]. Plant cell reports,2019,38(4):475-485. |
[39] | MA X, FENG F, ZHANG Y, et al.A novel rice grain size gene OsSNB was identified by genome-wide association study in natural population[J]. PLoS genetics,2019,15(5): e1008191. |
[40] | SUN Y, JIAO G, LIU Z, et al.Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes[J]. Frontiers in plant science,2017,8:298. |
[41] | 杨平,陈春莲,姚晓云,等.利用基因编辑技术改良水稻直链淀粉含量与香味[J].分子植物育种,2020,18(3):915-923. |
[42] | 王加峰,郑才敏,刘维,等.基于CRISPR/Cas9技术的水稻千粒重基因tgw6突变体的创建[J].作物学报,2016,42(8):1160-1167. |
[43] | 徐鹏,王宏,涂燃冉等.利用CRISPR/Cas9系统定向改良水稻稻瘟病抗性[J].中国水稻科学,2019,33(4):313-322. |
[44] | SHI J, GAO H, WANG H, et al. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions[J]. Plant biotechnology journal,2017,15(2):207-216. |
[45] | LI J, ZHANG H, SI X, et al.Generation of thermosensitive male- sterile maize by targeted knockout of the ZmTMS5 gene[J]. Journal of genetics and genomics,2017,44(9):465-468. |
[46] | SVITASHEV S, YOUNG J, SCHWARTZ C, et al.Targeted mutagenesis, precise gene editing, and site- specific gene insertion in maize using Cas9 and guide RNA[J]. Plant physiology,2015,169:931-945. |
[47] | ZENG R, LI Z, SHI Y, et al.Natural variation in a type-A response regulator confers maize chilling tolerance[J]. Nature communications,2021,12(1):4713. |
[48] | WANG Y, CHENG X, SHAN Q, et al.Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew[J]. Nature biotechnology,2014,32(9):947-951. |
[49] | WANG W, PAN Q, HE F, et al.Transgenerational CRISPRCas9 activity facilitates multiplex gene editing in allopolyploid wheat[J]. The CRISPR journal,2018,1(1):65-74. |
[50] | DO P T, NGUYEN C X, BUI H T, et al.Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and alpha-linolenic acid phenotype in soybean[J]. BMC Plant Biology, 2019,19(1):311. |
[51] | WANG J, KUANG H, ZHANG Z, et al.Generation of seed lipoxygenase-free soybean using CRISPR-Cas9[J]. The crop journal,2020,8(3):432-439. |
[52] | LI M, CHEN R, JIANG Q Y, et al.GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean[J]. Plant molecular biology,2020,105(3):333-345. |
[53] | NADAKUDUTI S S, STARKER C G, VOYTAS D F, et al.Genome editing in potato with CRISPR/Cas9[J]. Methods in molecular biology (Clifton, N.J.),2019,1917:183-201. |
[54] | ZENG Z, HAN N, LIU C, et al.Functional dissection of HGGT and HPT in barley vitamin E biosynthesis via CRISPR/Cas9-enabled genome editing[J]. Annals of botany,2020,126(5):929-942. |
[55] | GAO W, LONG L, TIAN X, et al.Genome editing in cotton with the CRISPR/Cas9 system[J]. Frontiers in plant science,2017,8:1364. |
[56] | FAN D, LIU T T, LI C F, et al.Efficient CRISPR/Cas9-mediated targeted mutagenesis in populus in the first generation[J]. Scientific reports,2015,5:12217. |
[57] | ZHOU X H,JACOBS T B,XUE L J,et al.Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate:CoA ligase specificity and redundancy[J].New phytologist,2015,208(2):298-301. |
[58] | MUHR M, PAULAT M, AWWANAH M, et al.CRISPR/Cas9-mediated knockout of Populus BRANCHED1 and BRANCHED2 orthologs reveals a major function in bud outgrowth control[J]. Tree physiology,2018,38(10):1588-1597. |
[59] | WAN S Z, LI C F, MA X D, et al.PtrMYB57 contributes to the negative regulation of anthocyanin and proanthocyanidin biosynthesis in poplar[J]. Plant cell reports,2017,36(8):1263-1276. |
[60] | CHARRIER A, VERGNE E, DOUSSET N, et al.Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system[J]. Frontiers in plant science,2019,10:40. |
[61] | VARKONYI-GASIC E, WANG T C, VOOGD C, et al.Mutagenesis of kiwifruit CENTRORADIALIS-like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering[J]. Plant biotechnology journal,2019,17(5):869-880. |
[62] | REN C, LIU X J, ZHANG Z, et al.CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.)[J]. Scientific reports,2016,6:32289. |
[63] | PENG A H, CHEN S C, LEI T G, et al.Engineering canker‐resistant plants through CRISPR/Cas9‐targeted editing of the susceptibility gene CsLOB1 promoter in citrus[J]. Plant biotechnology journal,2017,15(12):1509-1519. |
[64] | GOMEZ M A, LIN Z D, MOLL T, et al.Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence[J]. Plant biotechnology journal,2019,17(2):421-434. |
[65] | KIM H R, PATEL K R, THORPE T A.Regeneration of mulberry plants through tissue culture[J]. Botanical gazette,1985,146:335-340. |
[66] | MACHII M.Leaf disc transformation of mulberry plant (Morus alba L.) by Agrobacterium Ti plasmid[J].Journal of insect biotechnology & sericology,1990,59:105-110. |
[67] | MACHII M, SUNG G B, YAMANUCHI H, et al.Transient expression of GUS gene introduced into mulberry plant by particle bombardment[J]. Journal of insect biotechnology & sericology,1996,65:503-506. |
[68] | KAPUR A, BHATNAGAR S, KHURANA P.Efficient regeneration from mature leaf explants of Indian mulberry via organogenesis[J]. Sericologia,2001,41:207-214. |
[69] | SUGIMURA Y, MIYAZAKI J, YONEBAYASHI K, et al.Gene transfer by electroporation into protoplasts isolated from mulberry call[J]. Journal of insect biotechnology & sericology,1999,68:49-53. |
[70] | OKA S, TEWARY P K.Induction of hairy roots from hypocotyls of mulberry (Morus indica L.) by Japanese wild strains of Agrobacterium rhizogenes[J]. Journal of insect biotechnology & sericology,2000,69:13-19. |
[71] | BHATNAGAR S, KAPUR A, KHURANA P.Evaluation of parameters for high efficiency gene transfer via particle bombardment in Indian mulberry[J]. Indian journal of experimental biology,2002,40(12):1387-1392. |
[72] | BHATNAGAR S, KHURANA P.Agrobacterium tumefaciens-mediated transformation of Indian mulberry, Morus indica cv. K-2:a time-phased screening strategy[J]. Plant cell reports,2003,21(7):669-675. |
[73] | SARKAR T, MOGILI T, SIVAPRASAD V.Improvement of abiotic stress adaptive traits in mulberry (Morus spp.):An update on biotechnological interventions[J]. 3 Biotech,2017,7(3):214. |
[74] | 谈建中,楼程富,钟名其,等.大豆球蛋白基因表达载体的构建及对桑树的遗传转化[J].蚕业科学,1999,25(1):5-10. |
[75] | 管志文,谭智达,陈爱玉,等.农杆菌携带柞蚕抗菌肽基因转入桑树的研究[J].蚕业科学,1994,20(1):1-6. |
[76] | 王勇,贾仕荣,陈爱玉,等.抗菌肽基因导入桑树获得抗病转基因植株[J].蚕业科学,1998,24(3):136-140. |
[77] | LAL S, GULYANI V, KHURANA P.Overexpression of hva1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica)[J]. Transgenic research,2008,17:651-663. |
[78] | CHECKER V G, CHIBBAR A K, KHURANA P.Stress-inducible expression of barley hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress[J].Transgenic research,2012,21(5):939-957. |
[79] | DAS M, CHAUHAN H, CHHIBBAR A, et al.High-efficiency transformation and selective tolerance against biotic and abiotic stress in mulberry, Morus indica cv. K-2, by constitutive and inducible expression of tobacco Osmotin[J]. Transgenic research,2011,20(2):231-246. |
[80] | SAJEEVAN R S, NATARAJA K N, SHIVASHANKARA K S, et al.Expression of Arabidopsis SHN1 in Indian mulberry (Morus indica L.) increases leaf surface wax content and reduces post-harvest water loss[J]. Frontiers in plant science,2017,8:418. |
[81] | SAEED B, DAS M, HAQ Q M R, et al. Overexpression of beta carotene hydroxylase-1 (bch1) in mulberry, Morus indica cv. K-2, confers tolerance against high-temperature and high-irradiance stress induced damage[J]. Plant cell tissue and organ culture,2015,120(3):1003-1015. |
[82] | 陈笑,冯献忠.基因组编辑技术在大豆遗传改良中的应用[J].农业生物技术学报,2021,29(4):789-798. |
[1] | LI Yue-ming, BI Yan-zhen. Advances in biological breeding of pigs [J]. HUBEI AGRICULTURAL SCIENCES, 2022, 61(21): 115-119. |
[2] | XIAO Hong-wei. Discovery of DNA ligase IV inhibitor through a docking-based screening and CRISPR/Cas9 study [J]. HUBEI AGRICULTURAL SCIENCES, 2021, 60(23): 177-180. |
[3] | REN Hong-yan, WANG Zi-jun, SHU Chang, HUA Zai-dong, BI Yan-zhen. Application of gene editing technology in improving lean meat rate of pigs [J]. HUBEI AGRICULTURAL SCIENCES, 2020, 59(21): 14-16. |
[4] | ZHANG Ting-ting, CHEN Tao, LI Yan-li, YANG Man-man, WEI Qiang, WANG Ran, LI Lin, LI Yong. Programmable base editing efficiency study of CRISPR/Cas9-guided DNA base editors in pig genome [J]. HUBEI AGRICULTURAL SCIENCES, 2020, 59(18): 143-149. |
[5] | MO Rong-li, QIN Guang-liang, XIE Jin-lin, YU Cui, LI Yong, DENG Wen, HU Xing-ming. Study on optimized fertilization of soil testing formula in mulberry garden [J]. HUBEI AGRICULTURAL SCIENCES, 2019, 58(17): 37-40. |
[6] | XU Wen-hao, ZHOU Wan, ZANG Dun-an, GONG Xue-jie, LIU Qing-hua, YU Meng-fei, XUE Lu, PENG Yong-bo. Study on sgRNA Validity Verification in Gene-Edited Mice Based on CRISPR/Cas9 [J]. HUBEI AGRICULTURAL SCIENCES, 2018, 57(24): 156-159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||