[1] 付强,肖圆圆,崔嵩,等.基于多目标模糊规划的灌区多水源优化配置[J].农业机械学报,2017,48(7):222-227,221. [2] 宫兴龙,付强,邢贞相,等. 土地利用方式对平原-丘陵-湿地交融区水资源的影响[J].农业机械学报,2018,49(6):254-262. [3] WANG Y,CHEN Y, PENG S.A GIS framework for changing cropping pattern under different climate conditions and irrigation availability scenarios[J]. Water resources management, 2011,25(13):3073-3090. [4] 陈红光, 王琼雅, 李晓宁, 等. 基于区间两阶段鲁棒优化模型的灌区水资源优化配置[J]. 农业机械学报,2019,50(3): 271-280. [5] 王玉宝,吴普特,孙世坤,等.我国粮食虚拟水流动对水资源和区域经济的影响[J]. 农业机械学报,2015,46(10):208-215. [6] LIU X M, HUANG G H, WANG S,et al.Water resources management under uncertainty:Factorial multi-stage stochastic program with chance constraint[J].Stochastic environmental research and risk assessment, 2016,30(3):945-957. [7] WANG S,HUANG G H.A multi-level taguchi-factorial two-stage stochastic programming approach for characterization of parameter uncertainties and their interactions:An application to water resources management[J]. European journal of operational research,2015,240(2):572-581. [8] CUI L, LI Y P, HUANG G H.Double-sided fuzzy chance-constrained linear fractional programming approach for water resources management[J]. Engineering optimization,2016,48(6):949-965. [9] GUO P,CHEN X H,LI M,et al.Fuzzy chance-constrained linear fractional programming approach for optimal water allocation[J]. Stochastic environmental research and risk assessment,2014,8(6):1601-1612. [10] 娄帅,王慧敏,牛文娟,等.基于免疫遗传算法水资源配置多阶段群决策优化模型研究[J].资源科学,2013,35(3):569-577. [11] 陈述,邵东国,李浩鑫,等.基于粒子群人工蜂群算法的灌区渠-塘-田优化调配耦合模型[J]. 农业工程学报,2014,30(20):90-97. [12] AL-AZZAWI, DHEYAA S.Evaluation of genetic algorithm optimization in machine learning[J]. Journal of information science and engineering,2020,36(2):231-241. [13] 王春阳,赵玉庆,射金兴,等.遗传算法变异算子的改进[J]. 山东大学农业学报,2019,50(5):898-901. [14] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial nets[J]. Advances in neural information processing systems,2014:2672-2680. [15] DENTON E, CHINTALA S, SZLAM A, et al.Deep generative image models using a Laplacian pyramid of adversarial networks[EB/OL].[2020-06-01]https://arxiv.org/pdf/1506.05751.pdf. [16] ARJOVSKY M, BOTTOU L. Towards principled methods for training generative adversarial networks[J]. Stat,2017,1050. arXiv:1701.04862. [17] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein GAN[EB/OL].(2017-05-31)[2020-3-29]https://arxiv.org/pdf/1701. 07875.pdf. |