湖北农业科学 ›› 2023, Vol. 62 ›› Issue (10): 45-50.doi: 10.14088/j.cnki.issn0439-8114.2023.10.009

• 资源·环境 • 上一篇    下一篇

青藏高原种植业碳排放量测度——以青海省青稞种植业为例

丁亚男, 丁生喜   

  1. 青海大学财经学院,青海 810016
  • 收稿日期:2022-08-16 发布日期:2023-11-14
  • 通讯作者: 丁生喜(1971-),女,青海西宁人,教授,硕士,主要从事区域可持续发展研究,(电子信箱)qhdxjjxdsx@qq.com。
  • 作者简介:丁亚男(1999-),女,青海西宁人,在读硕士研究生,研究方向为农村发展,(电话)13897586502(电子信箱)1026599448@qq.com.
  • 基金资助:
    青海省科技厅重大科技专项(2021-NK-A3)

Measurement of carbon emissions from planting industry on the Qinghai-Tibet Plateau: A case study of highland barley planting industry in Qinghai Province

DING Ya-nan, DING Sheng-xi   

  1. School of Finance and Economics, Qinghai University, Qinghai 810016,China
  • Received:2022-08-16 Published:2023-11-14

摘要: 为研究青藏高原种植业碳排放量测度问题,以青海省青稞(Hordeum vulgare L. var. nudum Hook. f.)种植业产生的碳排放量、碳排放强度、碳成本为测算目标进行测定。通过对青海省1997—2019年的碳排放总量和农业碳排放量现状进行分析,发现青海省碳排放总量仍居高不下,农业碳排放量也始终处于较高水平。基于1997—2019年青海省农业碳排放数据,使用Matlab软件中GUI工具箱搭建非线性次回归神经网络模型,并使用神经网络时序工具对青海省农业2020—2026年碳排放进行多步预测,结果显示2020—2026年青海省农业碳排放量仍呈高位波动增长的趋势,迫切需要开展“双碳”减排。依据青稞种植业碳排放来源,建立了农用柴油、人工、化肥、农药、农膜、N2O排放6个测算指标。并基于2015—2020年各测算指标的数据建立IPCC清单估算模型,最终测得青海省青稞种植业2015—2020年碳排放总量、碳排放强度和碳成本,结果显示,2015—2020年青海省青稞种植业碳排放总量并未随着青稞种植面积的增大而出现大幅度增长,而青稞种植业碳排放强度和碳成本随着青稞种植面积的增大而有所降低。

关键词: 碳排放, 青稞(Hordeum vulgare L. var. nudum Hook. f.)种植业, IPCC清单估算, 非线性次回归神经网络, 多步预测, 青藏高原, 青海省

Abstract: In order to study the measurement of carbon emissions from the planting industry on the Qinghai-Tibet Plateau, the carbon emissions, carbon emission intensity and carbon cost of the highland barley (Hordeum vulgare L. var. nudum Hook. f.) planting industry in Qinghai Province were measured. Through the analysis of the total carbon emissions and agricultural carbon emissions in Qinghai Province from 1997 to 2019, it was found that the total carbon emissions in Qinghai Province were still high, and agricultural carbon emission had always been at a high level. Based on the agricultural carbon emission data of Qinghai Province from 1997 to 2019, a nonlinear sub-regression neural network model was built by using GUI toolbox in Matlab software, and a neural network timing tool was used to make multi-step prediction of agricultural carbon emission of Qinghai Province from 2020 to 2026. The results showed that from 2020 to 2026, agricultural carbon emissions in Qinghai Province would still show a trend of high fluctuation growth, and it was urgent to carry out “peak carbon dioxide emissions and carbon neutrality” emission reduction. After analyzing the sources of carbon emission from highland barley planting industry, six measuring indexes of agricultural diesel, artificial, chemical fertilizer, pesticide, agricultural film and N2O emission had been established. Then, an IPCC inventory estimation model was established based on the data of the established six indicators from 2015 to 2020, and the total carbon emission, carbon emission intensity and carbon cost of highland barley planting industry in Qinghai Province from 2015 to 2020 were measured. The results showed that, the total carbon emission of highland barley planting industry in Qinghai Province from 2015 to 2020 did not increase significantly with the increase of highland barley planting area, while the carbon emission intensity and carbon cost of highland barley planting industry decreased with the increase of highland barley planting area.

Key words: carbon emissions, highland barley (Hordeum vulgare L. var. nudum Hook. f.)planting industry, IPCC inventory estimation, nonlinear sub-regression neural network, multi-step prediction, Qinghai-Tibet Plateau, Qinghai Province

中图分类号: