湖北农业科学 ›› 2023, Vol. 62 ›› Issue (8): 207-212.doi: 10.14088/j.cnki.issn0439-8114.2023.08.033

• 信息工程 • 上一篇    下一篇

基于无人机低空高光谱遥感影像的柑橘黄龙病植株监测模型

李敏, 覃泽林, 兰宗宝, 方辉, 余圣新, 莫小香, 谢国雪, 曾志康   

  1. 广西壮族自治区农业科学院农业科技信息研究所,南宁 530007
  • 收稿日期:2023-06-19 出版日期:2023-08-25 发布日期:2023-09-22
  • 通讯作者: 曾志康(1983-),男,广东梅州人,高级工程师,主要从事数字农业研究,(电话)18978936088(电子信箱)zengzkang@126.com。
  • 作者简介:李 敏(1992-),男,广西玉林人,工程师,硕士,主要从事农业信息技术、机器学习研究,(电话)18776966432(电子信箱)383293935@qq.com。
  • 基金资助:
    作者简介:广西创新驱动发展专项资金项目(桂科AA20108003; 桂科AA22036002); 广西壮族自治区农业科学院科技发展基金项目(桂农科2021JM73; 桂农科2023YM84); 南宁市江南区科学研究与技术开发计划项目(2020020905)

Citrus huanglongbing plant monitoring model based on UAV low altitude hyperspectral remote sensing imaging

LI Min, QIN Ze-lin, LAN Zong-bao, FANG Hui, YU Sheng-xin, MO Xiao-xiang, XIE Guo-xue, ZENG Zhi-kang   

  1. Agricultural Science and Technology Information Research Institute,Guangxi Academy of Agricultural Sciences,Nanning 530007,China
  • Received:2023-06-19 Online:2023-08-25 Published:2023-09-22

摘要: 以广西壮族自治区柳州市鹿寨县平山镇九简村的柑橘(Citrus reticulata Blanco)为研究对象,通过地面人工实测判别柑橘黄龙病(HLB)植株,协同无人机低空遥感获取标定柑橘种植地块的高光谱影像;计算柑橘健康植株和HLB植株冠层感兴趣区域(ROI)的平均光谱,并对初始光谱进行异常数据剔除、平滑去噪和光谱变换,得到原始光谱、一阶微分光谱(FDR)和二阶微分光谱(SDR);采用主成分分析法对其进行降维后,构建支持向量机(SVM)分类模型。结果表明,通过选择400~1 000 nm的特征波段,使用ArcGIS软件提取样本平均光谱,其全波段一阶微分光谱的训练集和测试集分类准确率分别达87.41%、84.67%,SVM分类模型参数分别为C=35.39、γ=0.01;使用ENVI软件提取样本平均光谱,其全波段一阶微分光谱的训练集和测试集分类准确率分别达92.39%、96.43%,SVM分类模型参数分别为C=5.06、γ=1.02。无人机低空遥感高光谱监测柑橘HLB具有可行性,可快速识别柑橘种植园地的HLB植株。

关键词: 黄龙病(HLB), 无人机, 高光谱, 支持向量机, 低空遥感, 柑橘(Citrus reticulata Blanco)

Abstract: Taking the citrus (Citrus reticulata Blanco) in Jiujian Village, Pingshan Town, Luzhai County, Liuzhou, Guangxi as the research object, the citrus huanglongbing (HLB) plants were identified through the ground manual measurement, and the hyperspectral imaging of the calibrated citrus planting plot was obtained by cooperating with UAV low altitude remote sensing; the average spectra of the regions of interest (ROI) in the canopy of healthy citrus plants and HLB plants were calculated, and outlier removal, smooth denoising, and spectral transformation on the initial spectra were performed to obtain the original spectra, first-order differential spectra (FDR), and second-order differential spectra (SDR);after dimensionality reduction using principal component analysis, a support vector machine (SVM) classification model was constructed. The results showed that by selecting feature bands ranging from 400 to 1 000 nm and using ArcGIS software to extract sample average spectra, the classification accuracy of the training and testing sets of the full band first order differential spectra reached 87.41% and 84.67%, respectively. The SVM classification model parameters were C=35.39 γ= 0.01;using ENVI software to extract the average spectrum of samples, the classification accuracy of the training and testing sets for the full band first-order differential spectrum reached 92.39% and 96.43%, respectively. The SVM classification model parameters were C=5.06 γ=1.02. UAV low altitude remote sensing and hyperspectral monitoring of citrus HLB was feasible, which could quickly identify HLB plants in citrus plantations.

Key words: huanglongbing (HLB), UAV, hyperspectral, support vector machine, low altitude remote sensing, citrus(Citrus reticulata Blanco)

中图分类号: