湖北农业科学 ›› 2023, Vol. 62 ›› Issue (8): 182-188.doi: 10.14088/j.cnki.issn0439-8114.2023.08.029

• 信息工程 • 上一篇    下一篇

基于RMAU-Net网络模型的高分影像耕地提取

袁鹏a, 王珂a, 肖坚b   

  1. 河海大学,a.水文水资源学院; b.计算机与信息学院,南京 210098
  • 收稿日期:2023-04-05 出版日期:2023-08-25 发布日期:2023-09-22
  • 通讯作者: 王 珂(1982-),男,河南原阳人,教授,博士,主要从事空间关系理论、遥感数字图像处理的研究,(电话)18951847187(电子信箱)kewang@hhu.edu.cn。
  • 作者简介:袁 鹏(1996-),男,四川南江人,在读硕士研究生,研究方向为遥感图像信息提取与应用,(电话)18705172729(电子信箱)599471929@qq.com。
  • 基金资助:
    国家自然科学基金项目(41771358); 广东省水利科技创新项目(2020-04); 中央高校基本科研业务费专项(B210202011)

High resolution image farmland extraction based on RMAU-Net network model

YUAN Penga, WANG Kea, XIAO Jianb   

  1. a.College of Hydrology and Water Resources; b.College of Computer and Information, Hohai University, Nanjing 210098, China
  • Received:2023-04-05 Online:2023-08-25 Published:2023-09-22

摘要: 针对传统全卷积神经网络无法实现高分影像耕地精确提取的问题,以高分二号遥感卫星影像为数据源,采用融合残差结构和多种注意力机制的改进U-Net网络模型(RMAU-Net网络模型)对研究区的耕地进行精细提取。使用耕地样本对RMAU-Net网络模型进行训练,并用训练后的网络模型对测试集影像中的耕地进行提取。为了验证RMAU-Net网络模型提取耕地的效果,选取DeeplabV3+、PSPNet、U-Net 3种传统的全卷积神经网络模型与RMAU-Net网络模型进行对比分析。结果表明,RMAU-Net网络模型提取的精确率、召回率、交并比、F1 Score分别为90.36%、90.78%、82.57%、90.57%。与DeepLabv3+、PSPNet和U-Net网络模型相比,RMAU-Net网络模型效果最佳。RMAU-Net网络模型为耕地精细提取提供了新的思路与方法,为农作物面积监测和产量估算等实际应用提供基础数据支持。

关键词: 高分影像, 耕地提取, 深度学习, 注意力机制, 残差结构, RMAU-Net网络模型

Abstract: In order to solve the problem that the traditional full convolutional neural network could not achieve accurate extraction of cultivated land from high-resolution image, this study used the high-resolution 2 remote sensing satellite imagery as the data source, and used the improved U-Net network model (RMAU-Net network model) that integrated residual structure and multiple attention mechanisms to extract the cultivated land in the study area. The RMAU-Net network model was trained by using cultivated land samples, and cultivated land was extracted from the test set images using the trained network model. In order to verify the effect of RMAU-Net network model in extracting cultivated land, three traditional full Convolutional neural network models, DeeplabV3+, PSPNet and U-Net, were selected for comparative analysis with RMAU-Net network model. The results showed that the accuracy, recall, Intersection over Union, and F1 score of the RMAU-Net network model extraction were 90.36%, 90.78%, 82.57%, and 90.57%, respectively. Compared with DeepLabv3+, PSPNet, and U-Net network models, the RMAU-Net network model performed the best. RMAU-Net network model provided new ideas and methods for precise extraction of cultivated land, and provided basic data support for practical applications such as crop area monitoring and yield estimation.

Key words: high-resolution imaging, extraction of cultivated land, deep learning, attention mechanism, residual structure, RMAU-Net network model

中图分类号: