[1] KANAKIDOU M,MYRIOKEFALITAKIS S,DASKALAKIS N,et al.Past, present, and future atmospheric nitrogen deposition[J]. Journal of the atmospheric sciences, 2016, 73(5): 2039-2047. [2] VITOUSEK P M, PORDER S, HOULTON B Z, et al.Terrestrial phosphorus limitation:Mechanisms implications and nitrogen-phosphorus interactions[J]. Ecological applications, 2010, 20(1): 5-15. [3] WANG C, LONG R, WANG Q, et al.Fertilization and litter effects on the functional group biomass, species diversity of plants, microbial biomass, and enzyme activity of two alpine meadow communities[J]. Plant and soil, 2010, 331(1): 377-389. [4] BOBBINK R, HICKS K, GALLOWAY J, et al.Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis[J]. Ecological applications, 2010, 20(1): 30-59. [5] BÜNEMANN E K, MARSCHNER P, MCNEILL A M, et al. Measuring rates of gross and net mineralisation of organic phosphorus in soils[J]. Soil biology and biochemistry, 2007, 39(4): 900-913. [6] 赵少华, 宇万太, 张璐, 等.土壤有机磷研究进展[J].应用生态学报, 2004(11): 2189-2194. [7] 陈美领, 陈浩, 毛庆功, 等. 氮沉降对森林土壤磷循环的影响[J]. 生态学报, 2016, 36(16): 4965-4976. [8] 李银. 模拟氮沉降对鼎湖山森林土壤酸性磷酸单酯酶活性和有效磷含量的影响[J]. 应用生态学报, 2011, 22(3): 631-636. [9] MIRABELLO M J, YAVITT J B, GARCIA M, et al.Soil phosphorus responses to chronic nutrient fertilisation and seasonal drought in a humid lowland forest, Panama[J]. Soil research,2013,51(3): 215-221. [10] 曾泉鑫, 张秋芳, 林开淼, 等. 酶化学计量揭示5年氮添加加剧毛竹林土壤微生物碳磷限制[J]. 应用生态学报, 2021, 32(2): 521-528. [11] ACHAT D L,BAKKER M R,AUGUSTO L,et al.Phosphorus status of soils from contrasting forested ecosystems in southwestern Siberia:Effects of microbiological and physicochemical properties[J]. Biogeosciences, 2013, 10(2): 733-752. [12] 刘连贵,曹洪法,高映新,等. 模拟酸雨对土壤微生物活性的影响[J]. 环境科学研究, 1991, 4(3):37-41. [13] 周嘉聪, 刘小飞, 郑永, 等. 氮沉降对中亚热带米槠天然林微生物生物量及酶活性的影响[J]. 生态学报, 2017, 37(1): 127-135. [14] GUO Q.Soil acidification induced by nitrogen addition and its responses to water addition in Inner Mongolia Temperate Steppe, China[J]. The journal of applied ecology, 2019, 30(10): 3285-3291. [15] STRICKLAND M S,ROUSK J.Considering fungal: Bacterial dominance in soils-methods, controls, and ecosystem implications[J]. Soil biology and biochemistry, 2010, 42(9): 1385-1395. [16] GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al.Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions[J]. Science, 2008, 32: 889-892. [17] GATTINGER A, MULLER A, HAENI M, et al.Enhanced top soil carbon stocks under organic farming[J]. Proceedings of the national academy of sciences, 2012, 109(44): 18226-18231. [18] LUO Z,WANG E,SUN O J.Can no-tillage stimulate carbon sequestration in agricultural soils?A meta-analysis of paired experiments[J]. Agriculture ecosystems and environment,2010,139(1-2):224-231. [19] 张世洪. Meta分析应合理设置亚组分析与敏感性分析以准确解释结果[J]. 中国现代神经疾病杂志, 2016, 16(1): 1-2. [20] CURTIS P S, WANG X.A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology[J]. Oecologia, 1998, 113(3): 299-313. [21] LIU C, LU M, CUI J, et al.Effects of straw carbon input on carbon dynamics in agricultural soils:A meta analysis[J]. Global change biology, 2014, 20(5): 1366-1381. [22] ACHAT D L,AUGUSTO L,GALLET-BUDYNEK A,et al. Drying-induced changes in phosphorus status of soils with contrasting soil organic matter contents implications for laboratory approaches[J]. Geoderma, 2012, 187-188: 41-48. [23] SAKURAI M, WASAKI J, TOMIZAWA Y, et al.Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter[J]. Soil science and plant nutrition, 2008, 54(1): 62-71. [24] ALLISON S D, VITOUSEK P M.Responses of extracellular enzymes to simple and complex nutrient inputs[J]. Soil biology and biochemistry, 2005, 37(5): 937-944. [25] 刘宪斌. 模拟氮沉降和刈割对内蒙古典型草原土壤微生物量的影响[J]. 中国农学通报, 2010, 26(13): 345-348. [26] GEISSELER D, LAZICKI P A, SCOW K M.Mineral nitrogen input decreases microbial biomass in soils under grasslands but not annual crops[J]. Applied soil ecology, 2016, 106: 1-10. [27] BLANES M C, VIÑEGLA B, SALIDO M T, et al. Coupled soil-availability and tree-limitation nutritional shifts induced by N deposition: Insights from N to P relationships in Abies pinsapo forests[J]. Plant and soil, 2013, 366(1): 67-81. [28] MALIK A A, PUISSANT J, BUCKERIDGE K M, et al.Land use driven change in soil pH affects microbial carbon cycling processes[J]. Nature communications, 2018, 9(1): 1-10. [29] WANG J, WU Y, ZHOU J, et al.Carbon demand drives microbial mineralization of organic phosphorus during the early stage of soil development[J]. Biology and fertility of soils, 2016, 52(6): 825-839. [30] 李鹏杰. 长期定位施肥对设施土壤有机磷组分及phoD微生物多样性影响的研究[D].沈阳:沈阳农业大学,2022. [31] SHI Y, SHENG L, WANG Z, et al.Responses of soil enzyme activity and microbial community compositions to nitrogen addition in bulk and microaggregate soil in the temperate steppe of Inner Mongolia[J]. Eurasian soil science, 2016, 49(10): 1149-1160. [32] ZHANG T, CHEN H Y H, RUAN H. Global negative effects of nitrogen deposition on soil microbes[J]. The ISME journal, 2018, 12(7): 1817-1825. [33] PAVLǓ L, PAVLǓ V, GAISLER J, et al.Relationship between soil and biomass chemical properties, herbage yield and sward height in cut and unmanaged mountain hay meadow (Polygono-Trisetion)[J]. Flora-morphology, distribution, functional ecology of plants, 2013, 208(10-12): 599-608. [34] 张新明, 李华兴, 刘远金. 磷酸盐在土壤中吸附与解吸研究进展[J]. 土壤与环境, 2001, 10(1): 77-80. [35] TRASAR-CEPEDA C, LEIRÓS M C, GIL-SOTRES F. Hydrolytic enzyme activities in agricultural and forest soils:Some implications for their use as indicators of soil quality[J]. Soil biology and biochemistry, 2008, 40(9): 2146-2155. [36] DEMOLING F, NILSSON L O, BÅÅTH E. Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils[J]. Soil biology and biochemistry, 2008, 40(2): 370-379. [37] 黄敏, 吴金水, 黄巧云, 等. 土壤磷素微生物作用的研究进展[J]. 生态环境, 2003, 12(3): 366-370. [38] 周建. 氮肥施用和模拟酸沉降对土壤酸化作用的影响研究[D]. 杭州: 浙江大学, 2013. [39] BLOOM A J, FRENSCH J, TAYLOR A R.Influence of inorganic nitrogen and pH on the elongation of maize seminal roots[J]. Annals of botany, 2006, 97(5): 867-873. [40] 李春越,王益,党廷辉,等. pH 对土壤微生物 C/P 比的影响[J].中国农业科学, 2013, 46(13): 2709-2716. [41] BANG-ANDREASEN T, NIELSEN J T, VORISKOVA J, et al.Wood ash induced pH changes strongly affect soil bacterial numbers and community composition[J]. Frontiers in microbiology, 2017, 8: 1400. [42] CLARHOLM M.Microbial biomass P, labile P, and acid phosphatase activity in the humus layer of a spruce forest, after repeated additions of fertilizers[J]. Biology and fertility of soils,1993, 16(4): 287-292. [43] LU X, MO J, GILLIAM F S, et al.Nitrogen addition shapes soil phosphorus availability in two reforested tropical forests in southern China[J]. Biotropica, 2012, 44(3): 302-311. [44] 伍昱飞. 增温及外源氮添加对大兴安岭多年冻土区活动层土壤理化性质及酶活性的影响[D]. 哈尔滨: 哈尔滨师范大学, 2021. [45] CULLINGS K W, NEW M H, MAKHIJA S, et al.Effects of litter addition on ectomycorrhizal associates of a lodgepole pine (Pinus contorta) stand in Yellowstone National Park[J]. Applied and environmental microbiology, 2003, 69(7): 3772-3776. [46] DRAKE J E, DARBY B A, GIASSON M A, et al.Stoichiometry constrains microbial response to root exudation-insights from a model and a field experiment in a temperate forest[J]. Biogeosciences, 2013, 10(2): 821-838. [47] HUANG W, ZHOU G, LIU J, et al.Shifts in soil phosphorus fractions under elevated CO2 and N addition in model forest ecosystems in subtropical China[J]. Plant ecology, 2014, 215(11): 1373-1384. [48] KUPERMAN R G.Litter decomposition and nutrient dynamics in oak-hickory forests along a historic gradient of nitrogen and sulfur deposition[J]. Soil biology and biochemistry, 1999, 31(2): 237-244. [49] TIAN D,NIU S.A global analysis of soil acidification caused by nitrogen addition[J]. Environmental research letters,2015, 10(2): 024019. [50] FERNANDEZ I J, RUSTAD L E.Soil response to S and N treatments in a northern New England low elevation coniferous forest[J]. Water air and soil pollution, 1990, 52(1): 23-39. [51] 付伟, 武慧, 赵爱花, 等. 陆地生态系统氮沉降的生态效应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 475-493. [52] 胡波, 王云琦, 王玉杰, 等. 模拟氮沉降对土壤酸化及土壤酸缓冲能力的影响[J]. 环境科学研究, 2015, 28(3): 418-424. [53] XIE D, SI G, ZHANG T, et al.Nitrogen deposition increases N2O emission from an N-saturated subtropical forest in southwest China[J]. Environmental pollution, 2018, 243: 1818-1824. [54] 徐仁扣. 土壤酸化及其调控研究进展[J]. 土壤, 2015, 47(2): 238-244. [55] ROTHWELL J J, FUTTER M N, DISE N B.A classification and regression tree model of controls on dissolved inorganic nitrogen leaching from European forests[J]. Environmental pollution,2008,156(2): 544-552. [56] DELLA MÓNICA I F, GODOY M S, GODEAS A M, et al. Fungal extracellular phosphatases: Their role in P cycling under different pH and P sources availability[J]. Journal of applied microbiology, 2018, 124(1): 155-165. [57] TAKTEK S, TRÉPANIER M, SERVIN P M, et al. Trapping of phosphate solubilizing bacteria on hyphae of the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM 197198[J]. Soil biology and biochemistry, 2015, 90: 1-9. [58] LUO G, LING N, NANNIPIERI P, et al.Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions[J]. Biology and fertility of soils, 2017, 53(4): 375-388. [59] BANG-ANDREASEN T, NIELSEN J T, VORISKOVA J, et al.Wood ash induced pH changes strongly affect soil bacterial numbers and community composition[J]. Frontiers in microbiology, 2017, 8: 1400. [60] CAO H, CHEN R, WANG L, et al.Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale[J]. Scientific reports,2016,6(1): 1-10. [61] 杨恒山, 张庆国, 邰继承, 等.种植年限对紫花苜蓿地土壤pH值和磷酸酶活性的影响[J]. 中国草地学报, 2009, 31(1): 32-35. [62] TURNER B L, BLACKWELL M S A. Isolating the influence of pH on the amounts and forms of soil organic phosphorus[J]. European journal of soil science, 2013, 64(2): 249-259. [63] 王晶苑,张心昱, 温学发, 等. 氮沉降对森林土壤有机质和凋落物分解的影响及其微生物学机制[J]. 生态学报,2013,33(5): 1337-1346. [64] WAN W, HAO X, XING Y, et al.Spatial differences in soil microbial diversity caused by pH driven organic phosphorus mineralization[J]. Land degradation and development, 2021, 32(2): 766-776. |