[1] 马欣. “双碳”背景下零碳园区建设研究[J].合作经济与科技,2023(8):4-7. [2] 姜克隽,贺晨旻,庄幸,等.我国能源活动CO2排放在2020—2022年之间达到峰值情景和可行性研究[J].气候变化研究进展,2016,12(3):167-171. [3] 刘菁婕. “双碳”目标下公众生态意识培养研究[J].湖北经济学院学报(人文社会科学版),2023,20(3):28-32. [4] BROWN S.Measuring carbon in forests: Current status and future challenges[J]. Environmental pollution, 2002, 116(3): 363-372. [5] 方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报,2001(9):967-973. [6] WANG H, PU R, ZHU Q, et al.Mapping health levels of Robinia pseudoacacia forests in the Yellow River Delta, China, using IKONOS and landsat 8 OLI imagery[J]. International journal of remote sensing, 2015, 36(4): 1114-1135. [7] 陈幸良,巨茜,林昆仑.中国人工林发展现状、问题与对策[J].世界林业研究,2014,27(6):54-59. [8] 李兰,陈尔学,李增元,等.合成孔径雷达森林树高和地上生物量估测研究进展[J].遥感技术与应用,2016,31(4):625-633. [9] 张加龙,胥辉.基于遥感的森林生物量估测样地调查方法的研究动态[J].西南林业大学学报(自然科学),2019,39(4):166-173. [10] LE TOAN T, BEAUDOIN A, RIOM J, et al.Relating forest biomass to SAR data[J]. IEEE transactions on geoscience and remote sensing, 1992, 30(2): 403-411. [11] BEAUDOIN A, LE TOAN T, GOZE S, et al.Retrieval of forest biomass from SAR data[J]. International journal of remote sensing, 1994, 15(14): 2777-2796. [12] ANTI E, PALOSCIA S, PETTINATO S, et al.The potential of multifrequency SAR images for estimating forest biomass in Mediterranean areas[J]. Remote sensing of environment, 2017, 200: 63-73. [13] 王长委,胡月明,沈德才,等.多源光学遥感数据估算桉树森林生物量[J].测绘通报,2014(12):20-23. [14] ZHENG D,RADEMACHER J, CHEN J, et al.Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA[J]. Remote sensing of environment, 2004, 93(3): 402-411. [15] LU J, WANG H, QIN S, et al.Estimation of aboveground biomass of Robinia pseudoacacia forest in the Yellow River Delta based on UAV and Backpack LiDAR point clouds[J]. International journal of applied earth observation and geoinformation,2020,86.DOI:10.1016/j.jag.2019.102014. [16] 吴彤,李勇,葛莹,等.利用Stacking集成学习估算柑橘叶片氮含量[J].农业工程学报,2021,37(13):163-171. [17] OGUNLEYE A, WANG Q G.XGBoost model for chronic kidney disease diagnosis[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2019, 17(6): 2131-2140. [18] BELGIU M, DRǍGUŢ L. Random forest in remote sensing: A review of applications and future directions[J]. ISPRS journal of photogrammetry and remote sensing, 2016, 114: 24-31. [19] FOODY G M, BOYD D S, CUTLER M E J. Predictive relations of tropical forest biomass from landsat TM data and their transferability between regions[J]. Remote sensing of environment, 2003, 85(4): 463-474. [20] SUN G, RANSON K J, KHARUK V I.Radiometric slope correction for forest biomass estimation from SAR data in the Western Sayani Mountains, Siberia[J]. Remote sensing of environment, 2002, 79(2-3): 279-287. [21] 宋音,王红,路开宇,等.基于CCA方法的黄河三角洲不同健康刺槐林的土壤属性研究[J].江西农业学报,2017,29(10):48-53. [22] BIAU G, SCORNET E.A random forest guided tour[J]. Test, 2016, 25: 197-227. [23] HYDE P, NELSON R, KIMES D, et al.Exploring LiDAR-RaDAR synergy—predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR[J]. Remote sensing of environment, 2007, 106(1): 28-38. [24] CHAI T, DRAXLER R R.Root mean square error (RMSE) or mean absolute error (MAE)?-Arguments against avoiding RMSE in the literature[J]. Geoscientific model development,2014,7(3):1247-1250. [25] 赵玉,王红,张珍珍.基于遥感光谱和空间变量随机森林的黄河三角洲刺槐林健康等级分类[J].遥感技术与应用,2016,31(2):359-367. [26] 张珍珍,王红.基于卫星IKONOS影像的黄河三角洲人工刺槐林健康状况分类[J].科学技术与工程,2014,14(33):73-79. [27] WANG H, ZHONG Y, PU R, et al.Dynamic analysis of Robinia pseudoacacia forest health levels from 1995 to 2013 in the Yellow River Delta, China using multitemporal landsat imagery[J]. International journal of remote sensing, 2018, 39(12): 4232-4253. |