湖北农业科学 ›› 2023, Vol. 62 ›› Issue (7): 143-148.doi: 10.14088/j.cnki.issn0439-8114.2023.07.025

• 信息工程 • 上一篇    下一篇

基于多源遥感数据的黄河三角洲人工刺槐林生物量估算

汪逸聪   

  1. 河海大学水文与水资源学院,南京 210098
  • 收稿日期:2023-04-06 出版日期:2023-07-25 发布日期:2023-08-15
  • 作者简介:汪逸聪(1997-),男,安徽池州人,在读硕士研究生,研究方向为林业遥感,(电话)13866564244(电子信箱)ccrick1997@gmail.com。
  • 基金资助:
    国家自然科学基金面上项目(41471419; 31971579)

Biomass estimation of artificial Robinia pseudoacacia forest in Yellow River Delta based on multi-source remote sensing data

WANG Yi-cong   

  1. College of Hydrology and Water Resources, Hohai University, Nanjing 210098,China
  • Received:2023-04-06 Online:2023-07-25 Published:2023-08-15

摘要: 利用哨兵影像、数字地形数据及森林实地样方调查数据,分别构建K-近邻(KNN)模型、随机森林(RF)模型、极值梯度增强(XGBboost)模型、Stacking模型,实现对黄河三角洲人工刺槐(Robinia pseudoacacia)林生物量的估算。结果表明,相较于K-近邻模型、随机森林模型、极值梯度增强模型,集成学习Stacking模型明显提高了生物量估测的精度(R2=0.61、RMSE=13.42 t/hm2)。

关键词: 哨兵, Stacking模型, 刺槐(Robinia pseudoacacia)林, 生物量, 黄河三角洲

Abstract: Using sentinel images, digital terrain data and forest field quadrat survey data, K-nearest neighbor (KNN) model, random forest (RF) model, extreme gradient enhancement (XGBboost) model and Stacking model were constructed respectively to estimate the biomass of artificial Robbin pseudoacacia forest in Yellow River Delta. The results showed that the integrated learning Stacking model significantly improved the accuracy of biomass estimation compared with K-nearest neighbor model, random forest model, and extreme gradient enhancement model (R2=0.61, RMSE=13.42 t/hm2).

Key words: sentinel, Stacking model, Robbin pseudoacacia forest, biomass, Yellow River Delta

中图分类号: