[1] TENG H F, LIANG Z Z, CHEN S C, et al.Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models[J]. Science of the total environment, 2018, 635: 673-686. [2] 魏梦美, 符素华, 刘宝元.青藏高原水力侵蚀定量研究进展[J].地球科学进展, 2021, 36(7):740-752. [3] 齐文文, 张百平, 庞宇,等.基于TRMM数据的青藏高原降水的空间和季节分布特征[J].地理科学, 2013, 33(8):999-1005. [4] 陈同德, 焦菊英, 王颢霖, 等.青藏高原土壤侵蚀研究进展[J].土壤学报, 2020, 57(3): 547-564. [5] 李元寿, 王根绪, 王军德, 等. 137Cs示踪法研究青藏高原草甸土的土壤侵蚀[J].山地学报, 2007, 25(1): 114-121. [6] 王莹, 谢忠元, 李峰, 等.青藏高原东南缘覆被交错带生态环境脆弱性评价[J].湖北农业科学,2021, 60(11):39-44. [7] 滕洪芬. 基于多源信息的潜在土壤侵蚀估算与数字制图研究[D]. 杭州:浙江大学. [8] LI Y, ZHANG Q W, REICOSKY D C, et al.Changes in soil organic carbon induced by tillage and water erosion on a steep cultivated hillslope in the Chinese Loess Plateau from 1898-1954 and 1954-1998[J]. Journal of geophysical research,2007,112(G1):G01021. [9] POLYAKOV V O, LAL R.Soil erosion and carbon dynamics under simulated rainfall[J]. Soil science, 2004, 169(8):590-599. [10] AN J, ZHENG F L, WANG B.Using 137Cs technique to investigate the spatial distribution of erosion and deposition regimes for a small catchment in the black soil region, Northeast China[J]. Catena, 2014, 123: 243-251. [11] CUI Y, FANG L, GUO X, et al.Natural grassland as the optimal pattern of vegetation restoration in arid and semi-arid regions: Evidence from nutrient limitation of soil microbes[J]. Science of the total environment, 2019, 648: 388-397. [12] 沙占江, 张娟, 宋昌斌, 等.基于RS/GIS的布哈河流域土壤侵蚀现状研究[J].水土保持通报, 2012, 32(6): 253-255. [13] 王雪璐. 青藏高原三江源高寒草地生态系统土壤侵蚀研究[D].兰州:兰州大学, 2016. [14] 丁晋利, 巴明廷, 郑晓梅.多核素联合示踪技术在土壤侵蚀研究中的应用进展[J].中国水土保持, 2013(5): 39-42. [15] 李青云, 张一云.铯-137同位素示踪法测算小流域土壤侵蚀量的研究[J].长江科学院院报, 1993, 10(4): 56-63. [16] 王俊杰, 苏正安, 周涛, 等. 137Cs和210Pbex双核素示踪“三北”防护林区退耕前后坡地土壤侵蚀变化[J].农业工程学报,2020, 36(24):64-72. [17] 胡菊芳, 沙占江, 马玉军, 等. 210Pbex示踪法技术原理及其在土壤侵蚀中的应用[J].盐湖研究,2017, 25(1):76-80. [18] 严平, 董光荣, 张信宝,等. 137Cs法测定青藏高原土壤风蚀的初步结果[J].科学通报, 2000, 45(2):199-204. [19] 郭小雪, 田鹏, 刘文民, 等.青藏公路都兰-格尔木段边坡侵蚀沟调查[J].水土保持研究, 2021, 28(4): 42-47. [20] LI Y, LI J J, ARE K S, et al.Livestock grazing significantly accelerates soil erosion more than climate change in Qinghai-Tibet Plateau: Evidenced from 137Cs and 210Pbex measurements[J]. Agriculture, ecosystems & environment, 2019, 285: 106643. [21] TENG Y, ZHAN J, LIU W, et al.Spatiotemporal dynamics and drivers of wind erosion on the Qinghai-Tibet Plateau, China[J]. Ecological indicators, 2021, 123:107340. [22] 邵全琴, 肖桐, 刘纪远, 等.三江源区典型高寒草甸土壤侵蚀的137Cs定量分析[J].科学通报, 2011, 56(13): 1019-1025. [23] 李俊杰, 李勇, 王仰麟, 等.三江源区东西样带土壤侵蚀的137Cs和210Pbex示踪研究[J].环境科学研究,2009, 143(12): 1452-1459. [24] 余迪,沙占江, 王求贵, 等.青藏高原东北部草原区土壤137Cs和210Pbex分布特征[J].干旱区资源与环境,2018,242(10):160-166. [25] YAN P, DONG G, ZHANG X B.Preliminary results of the study on wind erosion in the Qinghai-Tibetan Plateau using 137Cs technique[J]. Chinese science bulletin, 2000, 45(11): 1019-1025. [26] 齐永青,张信宝,贺秀斌,等.中国137Cs本底值区域分布研究[J].核技术, 2006, 29(1): 42-50. [27] ZHANG X B, HIGGITT D L, WALLING D E.A preliminary assessment of the potential for using Caesium-137 to estimate rates of soil-erosion in the Loess Plateau of China[J]. Hydrological sciences journal,1990,35(3): 243-252. [28] 张建国, 刘淑珍.界定西藏冻融侵蚀区分布的一种新方法[J].地理与地理信息科学, 2005(2): 32-34,47. [29] 李庆, 张春来, 周娜,等.青藏高原沙漠化土地空间分布及区划[J].中国沙漠, 2018, 38(4):690-700. [30] CHEN P, YI P, XIONG L, et al.Use of Be-10 isotope to predict landscape development in the source area of the Yellow River (SAYR), northeastern Qinghai-Tibet Plateau[J]. J Environ Radioact, 2019, 203: 187-199. [31] 方广玲, 香宝, 赵卫, 等.基于GIS和RUSLE的拉萨河流域土壤侵蚀研究[J].水土保持学报, 2015, 29(3): 6-12. [32] 田杏敏, 李凤英, 何小武, 等.鄱阳湖流域日降雨的侵蚀性雨量标准研究[J].水土保持学报, 2021, 35(3): 185-189. [33] 谢云, 刘宝元, 章文波.侵蚀性降雨标准研究[J].水土保持学报, 2000, 14(4): 6-11. [34] 牛丽楠, 邵全琴, 刘国波, 等.六盘水市土壤侵蚀时空特征及影响因素分析[J].地球信息科学学报, 2019, 21(11):1755-1767. [35] 史志华, 宋长青.土壤水蚀过程研究回顾[J].水土保持学报, 2016, 30(5): 1-10. |