湖北农业科学 ›› 2022, Vol. 61 ›› Issue (23): 190-196.doi: 10.14088/j.cnki.issn0439-8114.2022.23.038

• 信息工程 • 上一篇    下一篇

基于国产静止高分卫星GF4-MSS数据的浒苔灾害监测研究

董京铭1, 石轩硕2, 张银意1, 郝玲1, 马晨晨1   

  1. 1.连云港市气象局,江苏 连云港 222000;
    2.南京信息工程大学海洋科学学院,南京 210044
  • 收稿日期:2022-02-16 出版日期:2022-12-10 发布日期:2023-01-27
  • 通讯作者: 张银意(1971-),男,江苏泰州人,高级工程师,主要从事专业气象服务研究,(电子信箱)13812337096@139.com。
  • 作者简介:董京铭(1989-),男,江苏连云港人,工程师,硕士,主要从事应用气象研究,(电话)18961341686(电子信箱)792156709@qq.com。
  • 基金资助:
    江苏省气象局面上项目(KM202210); 连云港市市局自立课题(LG202001)

Study on Ulva prolifera disaster monitoring based on domestic geostationary satellite GF4-MSS data

DONG Jing-ming1, SHI Xuan-shuo2, ZHANG Yin-yi1, HAO ling1, MA Chen-chen1   

  1. 1. Lianyungang Meteorological Bureau, Lianyungang 222000,Jiangsu,China;
    2. School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Received:2022-02-16 Online:2022-12-10 Published:2023-01-27

摘要: 基于国产静止卫星高分四号(GF4)MSS(Multi Spectral Scanner)传感器大气层顶反射率数据,采用缨帽变换得到的绿度指数实现了对中国近海浒苔(Ulva prolifera)灾害的准确监测。该算法无需大气校正和云掩膜环节,容易操作实施,同时可有效排除云像素干扰。将绿度指数应用到2019年多幅GF4-MSS遥感图像上,有效分析了浒苔范围的动态变化,为国产高分卫星系列监测浒苔灾害提供了新的技术支撑,同时推广国产光学卫星资料的使用率。

关键词: 浒苔(Ulva prolifera), 灾害监测, 高分四号, 绿度指数

Abstract: Based on the top-of-atmosphere reflectance of the domestic geostationary satellite GF4-MSS (Multi-spectral Scanner) sensor, the greenness index obtained by tasseled cap transformation analysis was used to realize the accurate monitoring of Ulva prolifera disaster. The algorithm did not need atmospheric correction and cloud mask, which was easy to operate and implement, and could effectively eliminate cloud pixel interference. The greenness index was applied to multiple GF4-MSS remote sensing images in 2019 to effectively analyze the dynamic changes of Ulva prolifera bloom range, which provided new technical support for the monitoring of Ulva prolifera disasters by domestic high-resolution satellite series, and promoted the utilization rate of domestic optical satellite data.

Key words: Ulva prolifera, disaster monitoring, satellite Gaofen 4, greenness index

中图分类号: