[1] BISBIS M B,GRUDA N,BLANKE M.Potential impacts of climate change on vegetable production and product quality-A review[J].Journal of cleaner production,2018,170:1602-1620. [2] BOSCAIU M,FITA A.Physiological and molecular characterization of crop resistance to abiotic stresses[J].Agronomy,2020,10:1308. [3] TESTER M,LANGRIDGE P.Breeding technologies to increase crop production in a changing world[J].Science,2010,327:818-822. [4] SYMINGTON L S,GAUTIER J.Double-strand break end resection and repair pathway choice[J].Annual review of genetics,2011,45:247-271. [5] CORTE L E D,MAHMOUD L M,MORAES T S,et al. Development of improved fruit, vegetable, and ornamental crops using the CRISPR/Cas9 genome editing technique[J].Plants(Basel),2019,8(12):601. [6] GAJ T,GERSBACH C A,BARBAS C F. ZFN, TALEN,CRISPR/Cas-based methods for genome engineering[J].Trends in biotechnology,2013,31(7):397-405. [7] GASIUNAS G,BARRANGOU R,HORVATH P,et al.Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J].Proceedings of the national academy of sciences of the United States of America,2012,109:15539-15540. [8] RAN F A,CONG L,YAN W X,et al.In vivo genome editing using Staphylococcus aureus Cas9[J].Nature,2015,520:186-191. [9] MAKAROVA K S,WOLF Y I,ALKHNBASHI O S,et al.An updated evolutionary classification of CRISPR-Cas systems[J].Nature reviews microbiology,2015,13:722-736. [10] HU J H,MILLER S M,GEURTS M H,et al.Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J].Nature,2018,556:57-63. [11] ROUILLON C,ZHOU M,ZHANG J,et al.Structure of the CRISPR interference complex CSM reveals key similarities with cascade[J].Molecular cell,2013,52(1):124-134. [12] CONG L,RAN F A,COX D,et al.Multiplex genome engineering using CRISPR/Cas systems[J].Science,2013,339(6121):819-823. [13] ESVELT K M,MALI P,BRAFF J L,et al.Orthogonal Cas9 proteins for RNA-guided gene regulation and editing[J].Nat Methods,2013,10(11):1116-1121. [14] YAMADA M,WATANABE Y,GOOTENBERG J S,et al.Crystal structure of the minimal Cas9 from Campylobacter jejuni reveals the molecular diversity in the CRISPR-Cas9 systems[J]. Mol Cell,2017,65(6):1109-1121. [15] BURSTEIN D,HARRINGTON L B,STRUTT S C,et al.New CRISPR-Cas systems from uncultivated microbes[J].Nature,2017,542:237-241. [16] MAHAS A,AMAN R,MAHFOUZ M.CRISPR-Cas13d mediates robust RNA virus interference in plants[J].Genome Biol,2019, 20(1):263. [17] LI C,ZHANG R,MENG X,et al.Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors[J].Nat Biotechnol,2020,38:875-882. [18] SHIMATANI Z,KASHOJIYA S,TAKAYAMA M,et al.Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion[J].Nat Biotechnol,2017,35:441-443. [19] ANZALONE A V,RANDOLPH P B,DAVIS J R,et al.Search-and-replace genome editing without double-strand breaks or donor DNA[J].Nature,2019,576:149-157. [20] LIN Q,ZONG Y,XUE C,et al.Prime genome editing in rice and wheat[J].Nat Biotechnol, 2020,38:582-585. [21] LI C,ZONG Y,WANG Y,et al.Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion[J].Genome Biol,2018,19:59. [22] LI J,LI H,CHEN J,et al.Toward precision genome editing in crop plants[J].Mol Plant,2020, 13:811-813. [23] BORRELLI V M G,BRAMBILLA V,ROGOWSKY P,et al. The enhancement of plant disease resistance using CRISPR/Cas9 technology[J].Front Plant Sci,2018, 9:1245. [24] LIANG Z,CHEN K,LI T,et al.Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes[J].Nat Commun,2017,8:14261. [25] PARK J,CHOE S.DNA-free genome editing with preassembled CRISPR/Cas9 ribonucleoproteins in plants[J].Transgenic Res,2019,28:61-64. [26] SVITASHEV S,SCHWARTZ C,LENDERTS B,et al.Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes[J].Nat Commun,2016,7: 13274. [27] LIU J,NANNAS N J,FU F F,et al.Genome-scale sequence disruption following biolistic transformation in rice and maize[J].Plant cell,2019,31:368-383. [28] ALI Z,EID A,ALI S,et al.Pea early-browning virus-mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis[J].Virus Res,2018,244: 333-337. [29] MAHAS A,ALI Z,TASHKANDI M,et al.Virus-mediated genome editing in plants using the CRISPR/Cas9 system[J].Methods Mol Biol,2019,1917:311-326. [30] CODY W B,SCHOLTHOF H B,MIRKOV T E.Multiplexed gene editing and protein overexpression using a tobacco mosaic virus viral vector[J].Plant Physiol,2017,175:23-35. [31] HU J,LI S,LI Z,et al.A barley stripe mosaic virus-based guide RNA delivery system for targeted mutagenesis in wheat and maize[J].Mol Plant Pathol,2019,20:1463-1474. [32] MEI Y,BEERNINK B M,ELLISON E E,et al.Protein expression and gene editing in monocots using foxtail mosaic virus vectors[J].Plant direct,2019,3:e00181. [33] JIANG N,ZHANG C,LIU J Y,et al.Development of beet necrotic yellow vein virus-based vectors for multiple-gene expression and guide RNA delivery in plant genome editing[J].Plant Biotechnol J,2019,17:1302-1315. [34] YIN K,HAN T,LIU G,et al.A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing[J].Sci Rep,2015,5:14926. [35] MA X,ZHANG X,LIU H,et al.Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9[J].Nat Plants,2020,6:773-779. [36] LEI J,DAI P,LI J,et al.Tissue-specific CRISPR/Cas9 system of cotton pollen with GhPLIMP2b and GhMYB24 promoters[J].Journal of plant biology,2021,64:13-21. [37] MAHER M F,NASTI R A,VOLLBRECHT M,et al.Plant gene editing through de novo induction of meristems[J].Nat Biotechnol,2020,38:84-89. [38] BASTET A,ZAFIROV D,GIOVINAZZO N,et al.Mimicking natural polymorphism in eIF4E by CRISPR-Cas9 base editing is associated with resistance to potyviruses[J].Plant Biotechnol J, 2019,17:1736-1750. [39] CHANDRASEKARAN J,BRUMIN M,WOLF D,et al.Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology[J].Mol Plant Pathol,2016,17: 1140-1153. [40] JI X,ZHANG H,ZHANG Y,et al.Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants[J].Nat Plants,2015,1:15144. [41] ZEILMAKER T,LUDWIG N R,ELBERSE J,et al.DOWNY MILDEW RESISTANT 6 and DMR6-LIKE OXYGENASE 1 are partially redundant but distinct suppressors of immunity in Arabidopsis[J].Plant J,2015,81(2):210-222. [42] NEKRASOV V,WANG C,WIN J,et al.Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion[J].Sci Rep,2017,7:482. [43] NEJAT N,ROOKES J,MANTRI N,et al.Plant-pathogen interactions: Toward development of next-generation disease-resistant plants[J].Critical reviews in biotechnology,2016, 22:1-9. [44] PRIHATNA C,BARBETTI M J,BARKER S J.A novel tomato fusarium wilt tolerance gene[J].Front Microbiol,2018,9:1226. [45] ZHANG S,WANG L,ZHAO R,et al.Knockout of SlMAPK3 reduced disease resistance to Botrytis cinerea in tomato plants[J].J Agric Food Chem,2018,66:8949-8956. [46] LI C,XU M X,CAI X,et al.Jasmonate signaling pathway modulates plant defense, growth, and their trade-offs[J].Int J Mol Sci,2022,23(7):3945. [47] ORTIGOSA A,GIMENEZ-IBANEZ S,LEONHARDT N,et al.Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2[J].Plant Biotechnol J,2019,17:665-673. [48] YIN Y,QIN K,SONG X,et al. BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase-mediated reactive oxygen species signaling in tomato[J]. Plant Cell Physiol,2018,59:2239-2254. [49] YU W,WANG L,ZHAO R,et al.Knockout of SlMAPK3 enhances tolerance to heat stress involving ROS homeostasis in tomato plants[J].BMC Plant Biol,2019,19:354. [50] TIAN S,JIANG L,CUI X,et al.Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing[J].Plant Cell Rep,2018,37:1353-1356. [51] BUTLER N M,ATKINS P A,VOYTAS D F,et al.Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system[J].Plos one,2015,10:e0144591. [52] BARI V K,NASSAR J A,ALY R.CRISPR/Cas9 mediated mutagenesis of MORE AXILLARY GROWTH 1 in tomato confers resistance to root parasitic weed Phelipanche aegyptiaca[J].Sci Rep,2021,11:3905. [53] BARI V K,NASSAR J A,KHEREDIN S M,et al.CRISPR/Cas9-mediated mutagenesis of CAROTENOID CLEAVAGE DIOXYGENASE 8 in tomato provides resistance against the parasitic weed Phelipanche aegyptiaca[J].Sci Rep,2019,9:11438. [54] LI H,QI M,SUN M,et al.Tomato transcription factor SlWUS plays an important role in tomato flower and locule development[J].Front Plant Sci,2017,8:457. [55] LI T,YANG X,YU Y,et al.Domestication of wild tomato is accelerated by genome editing[J].Nat Biotechnol,2018,36:1160-1163. [56] RODRíGUEZ-LEAL D,LEMMON Z H,MAN J,et al. Engineering quantitative trait variation for crop improvement by genome editing[J].Cell,2017,171(2):470-480. [57] BALLESTER A R,MOLTHOFF J,DE VOS R,et al.Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color[J].Plant Physiol,2010,152:71-84. [58] DENG L,WANG H,SUN C,et al.Efficient generation of pink-fruited tomatoes using CRISPR/Cas9 system[J].J Genet Genomics,2018,45:51-54. [59] KU H K,HA S H.Improving nutritional and functional quality by genome editing of crops: Status and perspectives[J].Front Plant Sci,2020,11:577313. [60] CHEN L,YANG D,ZHANG Y,et al.Evidence for a specific and critical role of mitogen-activated protein kinase 20 in uni-to-binucleate transition of microgametogenesis in tomato[J]. New Phytol,2018,219:176-194. [61] KRIS-ETHERTON P M,HECKER K D,BONANOME A,et al. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer[J].Am J Med,2002,113(S2):71-88. [62] MENG X,YANG D,LI X,et al.Physiological changes in fruit ripening caused by overexpression of tomato SlAN2, an R2R3-MYB factor[J].Plant Physiol Biochem,2015,89:24-30. [63] YE J,WANG X,HU T X,et al.An InDel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance[J].Plant cell,2017,29(9):2249-2268. [64] GRAMAZIO P,TAKAYAMA M,EZURA H.Challenges and prospects of new plant breeding techniques for GABA improvement in crops: Tomato as an example[J].Front Plant Sci,2020,11: 577980. [65] LI X,WANG Y,CHEN S,et al.Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing[J].Front Plant Sci,2018,9:559. [66] NONAKA S,ARAI C,TAKAYAMA M,et al.Efficient increase of ɣ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis[J].Sci Rep,2017,7:7057. [67] ZHANG H,SI X,JI X,et al.Genome editing of upstream open reading frames enables translational control in plants[J].Nat Biotechnol,2018,36:894-898. [68] LI J,SCARANO A,GONZALEZ N M,et al.Biofortified tomatoes provide a new route to vitamin D sufficiency[J].Nat Plants,2022, 8(6):611-616. [69] NAKAYASU M,AKIYAMA R,LEE H J,et al.Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene[J].Plant Physiol Biochem, 2018,131:70-77. [70] MAIOLI A,GIANOGLIO S,MOGLIA A,et al.Simultaneous CRISPR/Cas9 editing of three PPO genes reduces fruit flesh browning in Solanum melongena L.[J].Front Plant Sci,2020,11: 607161. [71] XIE Y,ZHANG T,HUANG X,et al.A two-in-one breeding strategy boosts rapid utilization of wild species and elite cultivars[J].Plant Biotechnol J,2022,20:800-802. [72] LEMMON Z H,REEM N T,DALRYMPLE J,et al.Rapid improvement of domestication traits in an orphan crop by genome editing[J].Nat Plants,2018,4:766-770. [73] ZSÖGÖN A,ČERMÁK T,NAVES E R,et al. De novo domestication of wild tomato using genome editing[J].Nat Biotechnol,2018,36:1211-1216. [74] POMPILI V,COSTA L D,PIAZZA S,et al.Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/FRT-based gene editing system[J].Plant Biotechnol J,2020,18:845-858. [75] COSTA L D,PIAZZA S,CAMPA M,et al.Efficient heat-shock removal of the selectablemarker gene in genetically modified grapevine[J].Plant cell, tissue and organ culture,2016,124:471-481. [76] COSTA L D,PIAZZA S,POMPILI V,et al.Strategies to produce T-DNA free CRISPRed fruit trees via Agrobacterium tumefaciens stable gene transfer[J].Sci Rep,2020,10(1):20155. [77] HERZOG K,FLACHOWSKY H,DEISING H B,et al.Heat-shock-mediated elimination of the nptII marker gene in transgenic apple (Malus×domestica Borkh.)[J].Gene,2012, 498(1):41-49. [78] GEHRKE F,SCHINDELE A,PUCHTA H.Nonhomologous end joining as key to CRISPR/Cas-mediated plant chromosome engineering[J].Plant Physiol,2022,188:1769-1779. [79] RÖNSPIES M,DORN A,SCHINDELE P,et al. CRISPR-Cas-mediated chromosome engineering for crop improvement and synthetic biology[J].Nat Plants,2021,7:566-573. [80] SCHMIDT C,PACHER M,PUCHTA H.Efficient induction of heritable inversions in plant genomes using the CRISPR/Cas system[J].Plant J,2019,98:577-589. [81] BEYING N,SCHMIDT C,PACHER M,et al.CRISPR-Cas9-mediated induction of heritable chromosomal translocations in Arabidopsis[J].Nat Plants,2020,6:638-645. [82] RAMAN V,ROJAS C M,VASUDEVAN B,et al.Agrobacterium expressing a type III secretion system delivers Pseudomonas effectors into plant cells to enhance transformation[J].Nat Commun,2022,13:2581. [83] DEBERNARDI J M,TRICOLI D M,ERCOLI M F,et al.A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants[J].Nat Biotechnol,2020,38:1274-1279. [84] MAREN N A,DUAN H,DA K D,et al. Genotype-independent plant transformation[J].Hortic Res,2022,9:uhac047. [85] PAN C,LI G,MALZAHN A A,et al.Boosting plant genome editing with a versatile CRISPR-Combo system[J].Nat Plants,2022,8:513-525. |