[1] 李燕,马瑜,朱海云,等.重金属污染土壤植物及其联合修复的研究进展[J].环境科学与技术,2016,39(S2):299-303. [2] 茹广欣. 泡桐遗传变异与改良研究[D].北京:中国林业科学研究院,2004. [3] 毛碧辉,吕成群,黄宝灵,等.不同造林密度对泡桐幼林生长和林分蓄积量的影响[J].安徽农业科学,2018,46(20):102-105. [4] 王利美,邓敏捷,张艳芳,等.泡桐丛枝病相关microRNAs测序及其靶基因预测[J].森林与环境学报,2021,41(2):180-187. [5] 吕亭亭,杨志华,陶娟,等.泡桐花总黄酮的提取工艺优化及抗氧化活性[J].中国酿造,2021,40(1):197-202. [6] 朱秀红,赵珠琳,程红梅,等.不同品种泡桐制备乙醇的预处理工艺优化研究[J].林产工业,2021,58(3):52-56. [7] 刘畅,徐应明,黄青青,等.不同冬小麦品种镉富集转运及离子组特征差异[J].环境科学,2022,43(3):1596-1605. [8] XU Q Z,HUANG B R.Antioxidant metabolism associated with summer leaf senescenceand turf quality decline for creeping bentgrass[J].Crop science,2004,44(2):553-560. [9] 李合生. 植物生理生化实验原理和技术[M].北京:高等教育出版社,2000. [10] 张志良,瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社,2003. [11] 赵亚华. 生物化学实验技术教程[M].广州:华南理工大学出版社,2000. [12] 王学奎. 植物生理生化实验原理和技术[M].北京:高等教育出版社,2006.176-286. [13] WANG H,GONG M,XIN H,et al.Effects of chilling stress on the accumulation of soluble sugars and their key enzymes in Jatropha curcas seedlings[J].Physiology and molecular biology of plants,2018,24(5):857-865. [14] KELTJENS W G,VAN B M L. Phytochelatins as biomarkers for heavy metal stress in maize(Zea mays L.)and wheat(Triticum aestivum L.): Combined effects of copper and cadmium[J].Plant and soil,1998,203(1):119-126. [15] XIN W,LIU Y G,ZENG G M,et al.Subcellular distribution and chemical forms of cadmium in Bechmeria nivea(L.)Gaud[J].Environmental and experimental botany,2008,62(3):389-395. [16] IBRAHIM E A.Seed priming to alleviate salinity stress in germinating seeds[J].J Plant Physiol,2016,192:38-46. [17] 宋香静,李胜男,郭嘉,等.不同盐分水平对柽柳扦插苗根系生长及生理特性的影响[J].生态学报,2018,38(2):606-614. [18] 刘凤,魏雨蒙,刘霜平,等.镉胁迫对小麦生长和生理特性的影响[J].山东化工,2017,46(3):24-26. [19] 惠俊爱,党志.土壤不同镉浓度对玉米CT38生长及抗氧化酶活性的影响[J].生态环境学报,2014,23(5): 884-889. [20] PATRA M,BHOWMIK N,BANDOPADHYAY B,et al.Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance[J].Environmental and experimental botany,2004,52(3):199-223. [21] 周振,杨素勤,柳海涛,等.曼陀罗对镉的吸收及其亚细胞分布研究[J].农业资源与环境学报,2019,36(3):385-391. [22] 檀建新,尹君,王文忠,等.镉对小麦、玉米幼苗生长和生理生化反应的影响[J].河北农业大学学报,1994(S1):83-87. [23] 阎雨平,蔡士悦,史艇.广东赤红壤、红壤含镉的农作物污染效应及其临界含量研究[J].环境科学研究,1992(2):49-53. [24] 石元值,阮建云,马立峰,等.茶树中镉、砷元素的吸收累积特性[J].生态与农村环境学报,2006(3):70-75. [25] 毛永成,刘璐,王小德.干旱胁迫对3种槭树科植物生理特性的影响[J].浙江农林大学学报,2016,33(1): 60-64. [26] 谢亚兵,林铃,毕学琴,等. Cd、Pb 单一胁迫对芳樟小苗叶片生理指标的影响[J].安徽农学通报,2018, 24(6):94-96,103. [27] 郭晖,郭孝茹,柴光东,等.重金属短期胁迫下5种观赏植物积累特性与生理抗性研究[J].西南林业大学学报(自然科学),2017,37(4):28-34. [28] JIANG J L,SU M,CHEN Y R,et al.Correlation of drought resistance in grass pea (Lathyrus sativus) with reactive oxygen species scavenging and osmotic adjustment[J].Biologia,2013,68(2):231-240. [29] 汪本福,王晴芳,李阳,等.干旱胁迫对水稻叶片生理生化特性的影响综述[J].湖北农业科学,2019,58(23):5-9,30. [30] ACA O,TURKAN I, ÖZDEMIR F.Superoxide dismutase and peroxidase activities in drought sensitive andresistant barley (Hordeum vulgare L.) varieties[J].Acta physiologiae plantarum,2001, 23(3):351-356. [31] ATTA K,PAL A K,JANA K.Effects of salinity, drought and heavy metal stress during seed germination stage in ricebean [Vigna umbellata (Thunb.) Ohwi and Ohashi][J].Plant physiology reports,2020,7:1-7. [32] 焦德志,赵泽龙.盐碱胁迫对植物形态和生理生化影响及植物响应的研究进展[J].江苏农业科学,2019,47(20):1-4. [33] 刘金萍,高奔,李欣,等.盐旱互作对不同生境盐地碱蓬种子萌发和幼苗生长的影响[J].生态学报,2010,30(20):5485-5490. [34] 查应琴,潘凤,关萍.镉胁迫对鸡冠花种子萌发及幼苗生理生化特性的影响[J].西北植物学报,2020,40(11):1900-1908. [35] 张思悦,张晴,李凌.黄葛树对土壤铅、镉污染耐受性的研究[J].西南师范大学学报(自然科学版),2019,44(1):79-83. [36] DAI H P,WEI S H,TWARDOWSKA I,et al.Hyperaccumulating potential of Bidens pilosa L. for Cd and elucidation of its translocation behavior based on cell membrane permeability[J].Environmental science and pollution research,2017,24(29):23161-23167. [37] YANG H C,CUI J,LUO C F,et al.Progress in metabolism of proline and sugar beet stress tolerance[J].China beet sugar,2015(4):30-35. [38] 张方静,罗峰,谭殷殷,等.高温胁迫对月季生理特性和叶绿素荧光参数的影响[J].河南农业科学,2019,48(4):108-115. [39] WENG B,XIE X Y,WEISS D J,et al.Kandelia obovata (S., L.) Yong tolerance mechanisms to cadmium:Subcellular distribution, chemical forms and thiol pools[J].Marine pollution bulletin,2012,64(11):2453-2460. [40] WEI Z G,WONG J W,CHEN D.Speciation of heavy metal binding non-protein thiols in Agropyron elongatum by size-exclusion HPLC-ICP-MS[J].Microchemical journal,2003,74(3):207-213. [41] SUN Q,WANG X R,DING S M,et al.Effects of interactions between cadmium and zinc on phytochelatin and glutathione production in wheat (Triticum aestivum L.)[J].Environmental toxicology: An international journal, 2005,20(2):195-201. [42] VAZQUEZ S,GOLDSBROUGH P,CARPENA R O.Comparative analysis of the contribution of phytochelatins to cadmium and arsenic tolerance in soybean and white lupin[J].Plant physiology and biochemistry,2008, 47(1):63-67. [43] MAHDAVIAN K,GHADERIAN S M,SCHAT H.Pb accumulation, Pb tolerance, antioxidants, thiols, and organic acids in metallicolous and non-metallicolous Peganum harmala L. under Pb exposure[J].Environmental and experimental botany,2016,126:21-31. [44] BHOOMIKA K,PYNGROPE S,DUBEY R S.Effect of aluminum on protein oxidation, non-protein thiols and protease activity in seedlings of rice cultivars differing in aluminum tolerance[J].Journal of plant physiology,2014, 171(7):497-508. [45] LAI H Y.Subcellular distribution and chemical forms of cadmium in Impatiens walleriana in relation to its phytoextraction potential[J].Chemosphere,2015,138:370-376. [46] 李杉杉. 镉污染土壤高效钝化-植物阻控效果与机理研究[D].北京:中国地质大学(北京),2019. [47] 史静,潘根兴.外加镉对水稻镉吸收、亚细胞分布及非蛋白巯基含量的影响[J].生态环境学报,2015,24(5):853-859. [48] 张海利,王涛,邹路易,等.铜绿假单胞菌对龙葵中Cd的亚细胞分布和化学形态的影响[J].农业环境科学学报,2018,37(8):1602-1609. |