[1] CHINCHOR N, ROBINSON P.MUC-7 named entity task definition[C].Proceedings of the 7th conference on message understanding,1997.1-21. [2] DRURY B, ROCHE M.A survey of the applications of text mining for agriculture[J]. Computers and electronics in agriculture,2019, 163: 104864. [3] LIU W, YU B, ZHANG C, et al.Chinese named entity recognition based on rules and conditional random field[A]. Proceedings of the 2018 2nd international conference on computer science and artificial intelligence[C].United States,2018.268-272. [4] WANG X, JIANG X, LIU M, et al.Bacterial named entity recognition based on dictionary and conditional random field[A]. IEEE international conference on bioinformatics and biomedicine (BIBM)[C]. 2017.439-444. [5] WALLACH H M.Conditional random fields: An introduction[R]. University of Pennsylvania CIS Technical Report, 2004.22. [6] LI X, WEI X H, JIA L, et al.Recognition of crops, diseases and pesticides named entities in Chinese based in conditional random fields[J]. Trans Chin Soc Agric Mach, 2017, 48: 178-185. [7] MALARKODI C S,LEX E, DEVI S L.Named entity recognition for the agricultural domain[J]. Res Comput Sci,2016,117:121-132. [8] ZHOU G D, SU J.Named entity recognition using an HMM-based chunk tagger[A].Proceedings of the 40th annual meeting of the association for computational linguistics[C].2002.473-480. [9] LECUN Y,BENGIO Y,HINTON G.Deep learning[J]. Nature, 2015, 521(7553): 436-444. [10] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780. [11] HUANG Z H, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[J/OL].arXiv preprint,https://arxiv.org/abs/1508.01991,2015-08-09. [12] ESPEJO-GARCIA B,LOPEZ-PELLICER F J,LACASTA J, et al. End-to-end sequence labeling via deep learning for automatic extraction of agricultural regulations[J]. Computers and electronics in agriculture, 2019, 162: 106-111. [13] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[C].Advances in neural information processing systems. 2017. 5998-6008. [14] DEVLIN J,CHANG M W,LEE K,et al.Bert: Pre-training of deep bidirectional transformers for language understanding[DB/OL]. https://aclanthology.org/N19-1423, 2019. [15] GOODFELLOW I J,SHLENS J,SZEGEDY C. Explaining and harnessing adversarial examples[J/OL]. arXiv preprint,https://doi.org/10.48550/arXiv.1412.6572, 2014. [16] MIYATO T,DAI A M,GOODFELLOW I. Adversarial training methods for semi-supervised text classification[J/OL]. arXiv preprint,https://doi.org/10.48550/arXiv.1605.07725,2016. [17] CHEN X, CARDIE C. Multinomial adversarial networks for multi-domain text classification[J/OL]. arXiv preprint,https://doi.org/10.48550/arXiv.1802.05694,2018. [18] ZHOU J T,ZHANG H,JIN D, et al.Dual adversarial neural transfer for low-resource named entity recognition[A].Proceedings of the 57th annual meeting of the association for computational linguistics[C]. 2019.3461-3471. [19] 赵鹏飞,赵春江,吴华瑞,等. 基于注意力机制的农业文本命名实体识别[J].农业机械学报,2021,52(1):185-192. [20] 李林,周晗,郭旭超,等. 基于多源信息融合的病虫害命名实体识别研究[J/OL].农业机械学报,http://kns.cnki.net/kcms/detail/11.1964.S.20210915.0933.006.html,2021-11-20. [21] CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J/OL]. arXiv preprint,https://doi.org/10.48550/arXiv.1412.3555, 2014. [22] MIYATO T,DAI A M,GOODFELLOW L.Adversarial training methods for semi-supervised text classification[J/OL]. arXiv preprint,https://doi.org/10.48550/arXiv.1605.07725, 2017. [23] DONG C, ZHANG J, ZONG C, et al.Character-based LSTM-CRF with radical-level features for Chinese named entity recognition[A].Natural language processing and Chinese computing[C]. Kunming,2016,2016.239-250. |