湖北农业科学 ›› 2022, Vol. 61 ›› Issue (14): 171-177.doi: 10.14088/j.cnki.issn0439-8114.2022.14.031

• 信息工程 • 上一篇    下一篇

基于高光谱成像技术的番茄叶片叶绿素含量可视化分布研究

孟露, 张捷, 杨甜, 吴龙国   

  1. 宁夏大学农学院,银川 750001
  • 收稿日期:2021-05-17 出版日期:2022-07-25 发布日期:2022-08-25
  • 通讯作者: 吴龙国(1988-),男,陕西咸阳人,博士,主要从事设施园艺植物营养调控、农产品无损检测研究工作,(电子信箱)wlg@nxu.edu.cn。
  • 作者简介:孟露(1993-),女,宁夏银川人,在读硕士研究生,研究方向为农艺与种业,(电话)15809583018(电子信箱)1051952431@qq.com。
  • 基金资助:
    第四批“宁夏青年科技人才托举工程”(TJGC2019065); 宁夏重点研发计划项目(2018BBF02012)

Study on the visual distribution of tomato leaf chlorophyll content based on hyperspectral imaging technology

MENG Lu, ZHANG Jie, YANG Tian, WU Long-guo   

  1. School of Agriculture,Ningxia University,Yinchuan 750001,China
  • Received:2021-05-17 Online:2022-07-25 Published:2022-08-25

摘要: 传统的叶绿素检测手段耗时耗力,利用便携式高光谱成像仪对微咸水灌溉下的番茄叶片叶绿素含量进行快速无损检测。通过采集不同处理条件下的冠层叶片图像,采用分析软件提取叶片光谱数据,进行异常值剔除、预处理、特征波长提取以及模型构建与可视化分布研究。结果表明,异常值剔除优化了模型,优选了原始光谱进行数据分析;利用PLSR方法对不同方法提取的特征波长建立模型,优选SPA提取的特征波长。在此基础上,采用MLR,PCR,PLSR,SVR,ANN模型对SPA提取的特征波长进行建模,并对不同的建模效果进行比较和分析,优选出MLR、PCR、PLSR模型,最优的特征波长为392、465、686、760 nm,最优模型的预测相关系数Rp为0.896,预测均方根误差为1.111。通过对3种模型的可视化研究,优选出PLSR模型用于预测番茄叶绿素含量。优选的特征波段可用于番茄叶片叶绿素含量的定量可视化分析。

关键词: 高光谱成像, 番茄叶片, 叶绿素, 可视化分布, 微咸水

Abstract: Due to the time and energy consumption of traditional detection methods, a portable hyperspectral imager was used to rapidly nondestructive detection of chlorophyll content in tomato leaves under briny water irrigation. By collecting images of canopy leaves under different processing conditions, the spectral data of the leaves were extracted by the analysis software, and the outliers removal, preprocessing, characteristic wavelength extraction, model construction and visual distribution research were carried out. The results showed that the outlier elimination optimized the model and the original spectrum for data analysis. PLSR(Partial least squares regression) method was used to model the characteristic wavelength extracted by different methods and optimize the characteristic wavelength extracted by SPA. On this basis, the MLR(Multiple linear regression), PCR(Principal component regression), PLSR, SVR(Support vector machine regression), and ANN(Artificial neural network) models were used to model the characteristic wavelengths extracted by SPA, and the different modeling effects were compared and analyzed. The MLR, PCR, and PLSR models were preferably selected. The optimal characteristic wavelengths were 392、465、686 and 760 nm, the prediction correlation coefficient of the optimal model was 0.896, and the prediction root-mean-square error was 1.111. Finally, the PLSR model was optimized to predict the chlorophyll content of tomato by visualizing three linear models. The optimized characteristic bands can be used to quantitatively and visually analyze the chlorophyll content of tomato leaves in the future.

Key words: hyperspectral imaging, tomato leaves, chlorophyll, visual distribution, brackish water

中图分类号: