[1] COMBARNOUS Y,NGUYEN T M D. Cell communications among microorganisms, plants, and animals: Origin, evolution, and interplays[J].Int J Mol Sci,2020,21(21):8052. [2] ORTEGA A, ZHULIN L B, KRELL T.Sensory repertoire of bacterial chemoreceptors[J]. Microbiology and molecular biology reviews,2017,81(4):e00033-17. [3] GUSHCHIN I, MELNIKOV I, POLOVINKIN V,et al.Mechanism of transmembrane signaling by sensor histidine kinases[J].Science,2017,356(6342):6345. [4] HOCH J A.Two-component and phosphorelay signal transduction[J].Current opinion in microbiology,2000,3(2):165-170. [5] HOCH J A,VARUGHESE K I.Keeping signals straight in phosphorelay signal transduction[J]. Journal of bacteriology,2001,183(17):4941-4949. [6] STOCK A M,ROBINSON V L,GOUDREAU P N.Two-component signal transduction[J].Annual review of biochemistry,2010,13(2):113-115. [7] WEST A H,STOCK A M.Histidine kinases and response regulator proteins in two-component signaling systems[J].Trends in biochemical sciences,2001,26(6):369-376. [8] KILMURY S L N,BURROWS L L. The Pseudomonas aeruginosa PilSR two-component system regulates both twitching and swimming motilities[J].Motility,2018,9(4):1310-1318. [9] PAPON N,STOCK A M.What do archaeal and eukaryotic histidine kinases sense?[J].Floor research,2019,8:2145-2153. [10] MUOK A R, BRIEGEL A,CRANE B R.Regulation of the chemotaxis histidine kinase CheA: A structural perspective[J].Biochim Biophys Acta Biomembr,2020,1862(1):183030. [11] DING X Y,HE Q, SHEN F L, et al.Regulatory role of an interdomain linker in the bacterial chemotaxis histidine kinase CheA[J].Journal of bacteriology,2018,200(10):e00052-18. [12] BI S Y,LAI L H.Bacterial chemoreceptors and chemoeffectors[J]. Cell Mol Life Sci,2015,72(4):691-708. [13] UD-DIN A I M S,ROUJEINIKOVA A. Methyl-accepting chemotaxis proteins:A core sensing element in prokaryotes and archaea[J].Cell Mol Life Sci,2017,74(18):3293-3303. [14] O'NEAL L,GULLETT J M,AKSENOVA A,et al. Distinct chemotaxis protein paralogs assemble into chemoreceptor signaling arrays to coordinate signaling output[J].MBio,2019,24;10(5):e01757-19. [15] HUANG Z W,PAN X Y,XU N,et al.Bacterial chemotaxis coupling protein: Structure, function and diversity[J].Microbiol Res,2019,219:40-48. [16] PONTING C P, ARAVIND L.PAS: A multifunctional domain family comes to light[J].Current biology,1997,7(11):R674-R677. [17] TAYLOR B L,ZHULIN I B.PAS domains: Internal sensors of oxygen, redox potential, and light[J].Microbiol Mol Biol Rev,1999, 63(2):479. [18] SOBRAN M A,COTTER P A.The BvgS pas domain, an independent sensory perception module in the bordetella bronchiseptica BvgAS phosphorelay[J].Journal of bacteriology,2019,201(17):e00286-19. [19] ADHIKARI A,BISWAS S,MUKHERJEE A,et al.PAS domain-containing phosphoglycerate kinase deficiency in Leishmania major results in increased autophagosome formation and cell death[J].Biochem J,2019,476(8):1303-1321. [20] ZHULIN I B.A novel phototaxis receptor hidden in the cyanobacterial genome[J].Journal of molecular microbiology & biotechnology,2000,2(4):491-493. [21] CHEN H J, LI N,YE L,et al.The GDP-switched GAF domain of DcpA modulates the concerted synthesis/hydrolysis of c-di-GMP in Mycobacterium smegmatis[J].Biochem J,2018,475(7):1295-1308. [22] WILLIAMS S B,STEWART V.Functional similarities among two-component sensors and methyl-accepting chemotaxis proteins suggest a role for linker region amphipathic helices in transmembrane signal transduction[J].Molecular microbiology,2010,33(6):1093-1102. [23] FLACK C E, PARKINSON J S.A zipped-helix cap potentiates HAMP domain control of chemoreceptor signaling[J].Proceedings of the national academy of ences of the United States of America,2018,115(15): 3519-3528. [24] ZHULIN I B.The superfamily of chemotaxis transducers: From physiology to genomics and back[J]. Adv Microb Physiol,2001,45:157-198. [25] KRELL T,LACAL J,MUÑOZ -MARTÍNEZ F, et al. Diversity at its best: Bacterial taxis[J]. Environ Microbiol,2011,13(5):1115-1124. [26] ZSCHIEDRICH C P,KEIDEL V,SZURMANT H.Molecular mechanisms of two-component signal transduction[J].Journal of molecular biology,2016,428(19):3752-3775. [27] ZHULIN I B,NIKOLSKAYA A N,GALPERIN M Y.Common extracellular sensory domains in transmembrane receptors for diverse signal transduction pathways in bacteria and archaea[J]. Journal of bacteriology,2003,185(1):285-294. [28] BREWSTER J L,MCKELLAR J L O,FINN T J,et al. Structural basis for ligand recognition by a Cache chemosensory domain that mediates carboxylate sensing in Pseudomonas syringae[J]. Scientific reports,2016,6:35198. [29] ANANTHARAMAN V,ARAVIND L.Cache-a signaling domain common to animal Ca2+-channel subunits and a class of prokaryotic chemotaxis receptors[J].Trends Biochem Sci,2000,25(11):535-537. [30] UPADHYAY A A,FLEETWOOD A D,ADBALI O,et al.Cache domains that are homologous to, but different from PAS domains comprise the largest superfamily of extracellular sensors in prokaryotes[J].PLoS computational biology,2016,12(4):e1004862. [31] CHEUNG J,HENDRICKSON W A.Sensor domains of two-component regulatory systems[J].Current opinion in microbiology,2010,13(2):116-123. [32] YOSHITANI K,ISHII E,TANIGUCHI K,et al.Identification of an internal cavity in the PhoQ sensor domain for PhoQ activity and safa-mediated control[J].Journal of the agricultural chemical society of Japan,2019,83(4):684-694. [33] YUAN J,JIN F,GLATTER T,et al.Osmosensing by the bacterial PhoQ/PhoP two-component system[J].Proceedings of the national academy of ences of the United States of America,2017:e10792-e10798. [34] PAPPALARDO L,JANAUSCH I G,VIJAYAN V,et al.The NMR structure of the sensory domain of the membranous two-component fumarate sensor (Histidine protein kinase) dcus of Escherichia coli[J].Journal of biological chemistry,2003,278(40):39185-39188. [35] KHAN M F,MACHUCA M A,RAHMAN M M,et al.Structure-activity relationship study reveals the molecular basis for specific sensing of hydrophobic amino acids by the Campylobacter jejuni chemoreceptor Tlp3[J].Biomolecules,2020,10(5):744. [36] UD-DIN A I M S,KHAN M F,ROUJEINIKOV A A. Broad specificity of amino acid chemoreceptor CtAa of Pseudomonas fluorescens is afforded by plasticity of its amphipathic ligand-binding pocket[J].Mol Plant Microbe Interact,2020,33(4):612-623. [37] LIU Y C,MACHUCA M A,BECKHAM S A, et al.Structural basis for amino-acid recognition and transmembrane signalling by tandem Per-Arnt-Sim (tandem PAS) chemoreceptor sensory domains[J].Acta Crystallogr D Biol Crystallogr,2015,71(Pt 10):2127-2136. [38] RICO-JIMENEZ M,MUNOZ-MARTINEZ F,GARCIA-FONTANA C,et al.Paralogous chemoreceptors mediate chemotaxis towards protein amino acids and the non-protein amino acid gamma-aminobutyrate (GABA)[J].Mol Microbiol,2013,88(6):1230-1243. [39] SANTOS J C,VIEIRA M L,ABENDROTH J,et al. Structural analysis of CACHE domain of the McpA chemoreceptor from Leptospira interrogans[J].Biochem Biophys Res Commun,2020,17;533(4):1323-1329. [40] MACHUCA M A,JOHNSON K S,LIU Y C,et al. Helicobacter pylori chemoreceptor TlpC mediates chemotaxis to lactate[J].Sci Rep,2017,26;7(1):14089. [41] BREWSTER J L, MCKELLAR J L,FINN T J, et al.Structural basis for ligand recognition by a Cache chemosensory domain that mediates carboxylate sensing in Pseudomonas syringae[J].Sci Rep, 2016,6:35198. [42] GARCIA V,REYES-DARIAS J A,MARTIN-MORA D,et al. Identification of a Chemoreceptor for C2 and C3 Carboxylic Acids[J].Appl Environ Microbiol,2015,81(16):5449-5457. [43] MARTIN-MORA D,ORTEGA Á,PEREZ-MALDONADO F J, et al. The activity of the C4-dicarboxylic acid chemoreceptor of Pseudomonas aeruginosa is controlled by chemoattractants and antagonists[J].Sci Rep,2018,8(1):2102. [44] ANANTHARAMAN V,ARAVIND L.The CHASE domain: A predicted ligand-binding module in plant cytokinin receptors and other eukaryotic and bacterial receptors[J].Trends in biochemical sciences,2001,26(10):579-582. [45] MOUGEL C,ZHULIN I B.CHASE: An extracellular sensing domain common to transmembrane receptors from prokaryotes, lower eukaryotes and plants[J].Trends in biochemical sciences,2001, 26(10):582-584. [46] ZHULIN I B,NIKOLSKAYA A N,GALPERIN M Y.Common extracellular sensory domains in transmembrane receptors for diverse signal transduction pathways in bacteria and archaea[J]. Journal of bacteriology,2003,185(1):285-294. [47] OKU S,KOMATSU A,TAJIMA T,et al.Identification of chemotaxis sensory proteins for amino acids in Pseudomonas fluorescens Pf 0-1 and their involvement in chemotaxis to tomato root exudate and root colonization[J]. Microbes Environ,2012,27(4):462-469. [48] O'NEAL L,VO L,ALEXANDRE G. Specific root exudate compounds sensed by dedicated chemoreceptors shape Azospirillum brasilense chemotaxis in the rhizosphere[J].Appl Environ Microbiol,2020,86(15):e01026-20. [49] HOTHORN M,DABI T,CHORY J.Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4[J].Nat Chem Biol,2011,7(11):766-768. [50] PERNISOVA M,GROCHOVA M,KONECNY T,et al.Cytokinin signalling regulates organ identity via the AHK4 receptor in Arabidopsis[J]. Development,2018,20;145(14):dev163907. [51] CHEN P, JIAO X, ZHANG Y, et al.The crystal structure of the phytopathogenic bacterial sensor PcrK reveals different cytokinin recognition mechanism from the plant sensor AHK4[J]. J Struct Biol,2019,208(1):69-76. [52] SHU C J,ULRICHl L E,ZHULIN I B.The NIT domain: A predicted nitrate-responsive module in bacterial sensory receptors[J]. Trends in biochemical sciences,2003,28(3):121-124. [53] BOUDES M,LAZAR N,GRAILLE M,et al.The structure of the NasR transcription antiterminator reveals a one-component system with a NIT nitrate receptor coupled to an ANTAR RNA-binding effector[J]. Mol Microbiol,2012,85(3):431-444. [54] GOODSON J R,ZHANG C,TRETTEL D, et al.An autoinhibitory mechanism controls RNA-binding activity of the nitrate-sensing protein NasR[J]. Mol Microbiol,2020,114(2):348-360. [55] SHRESTHA O K,SHARMA R,TOMICZEK B,et al.Structure and evolution of the 4-helix bundle domain of Zuotin, a J-domain protein co-chaperone of Hsp70[J]. PLoS one,2019,14(5):e0217098. [56] FALKE J, DERNBURG A F,STERNBERG D A,et al.Structure of a bacterial sensory receptor. A site-directed sulfhydryl study[J]. Journal of biological chemistry,1988,263(29):14850-14858. [57] CHERVITZ S A, LIN C M, FALKE J J.Transmembrane signaling by the aspartate receptor: Engineered disulfides reveal static regions of the subunit interface[J]. Biochemistry,1995, 34(30):9722-9733. [58] ULRICH L E, ZHULIN I B.Four-helix bundle: A ubiquitous sensory module in prokaryotic signal transduction[J]. Bioinformatics,2005,21(S3): 45-48. [59] LI M,HAZELBAUER G L.Core unit of chemotaxis signaling complexes[J]. Proceedings of the national academy of sciences of the United States of America,2011,108(23):9390-9395. [60] LIU J, HU B,MORADO D R, et al.Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells[J]. Proceedings of the national academy of sciences of the United States of America,2012,109(23):8806-8807. [61] HAZELBAUER G L,FALKE J J,PARKINSON J S.Bacterial chemoreceptors: High-performance signaling in networked arrays[J].Trends Biochem Sci,2008,33(1):9-19. [62] HAZELBAUER G L.Bacterial chemotaxis: The early years of molecular studies[J].Annu Rev Microbiol,2012; 66:285-303. [63] BIEMANN H P, KOSHLAND D E. Aspartate receptors of Escherichia coli and Salmonella typhimurium bind ligand with negative and half-of-the-sites cooperativity[J]. Biochemistry,1994,25; 33(3):629-634. [64] MISE T.Structural analysis of the ligand-binding domain of the aspartate receptor tar from escherichia coli[J]. Biochemistry,2016,55(26):3708-3713. [65] TAJIMA H,IMADA K,SAKUMA M,et al.Ligand specificity determined by differentially arranged common ligand-binding residues in bacterial amino acid chemoreceptors Tsr and Tar[J].J Biol Chem,2011,286(49):42200-42210. [66] GAVIRA J A,MATILLA M A,FERNANDEZ M,et al.The structural basis for signal promiscuity in a bacterial chemoreceptor[J].FEBS J,2021,288(7):2294-2310. |