湖北农业科学 ›› 2022, Vol. 61 ›› Issue (9): 141-145.doi: 10.14088/j.cnki.issn0439-8114.2022.09.028

• 信息工程 • 上一篇    下一篇

基于GLCM纹理特征提取的黄瓜叶部病害检测算法研究

李亚文, 刘爱军, 陈垚   

  1. 商洛学院电子信息工程与电气工程学院/商洛市智慧农业与技术应用研究中心,陕西 商洛 726000
  • 收稿日期:2021-05-31 出版日期:2022-05-10 发布日期:2022-05-26
  • 通讯作者: 刘爱军(1972-),男,陕西洛南人,副教授,主要从事数据挖掘、信息检索、模式识别等研究,(电子信箱)sl_liuaj@163.com。
  • 作者简介:李亚文(1984-),女,陕西华州人,副教授,主要从事模式识别、目标跟踪、图像处理研究,(电话)18791157876(电子信箱)slxylyw@163.com;陈 垚(1980-),男,陕西山阳人,副教授,博士,主要从事机电一化体研究,(电子信箱)16563961@qq.com。
  • 基金资助:
    商洛市科技计划重点项目(19SLKJ121); 商洛学院科研创新团队项目(19SXC03)

Research on cucumber leaf disease detection algorithm based on GLCM texture feature extraction

LI Ya-wen, LIU Ai-jun, CHEN Yao   

  1. Electronic Information and Electrical Engineering College,Shangluo University/Smart Agricultural Technology and Application Research Center of Shangluo,Shangluo 726000, Shaanxi, China
  • Received:2021-05-31 Online:2022-05-10 Published:2022-05-26

摘要: 针对传统的植物叶部病害检测算法复杂的特点,提出了一种基于GLCM纹理特征提取的植物叶部病害检测算法。以黄瓜叶部炭疽病为研究对象,利用K-means聚类算法进行图像阈值分割,并利用灰度共生矩阵提取样本的能量均值、熵均值、对比度均值和相关均值等4种纹理特征参数,通过参数训练,确定无病害区和有病害区参数的区域,进而判定样本的病害情况。结果表明该算法实现效率高、鲁棒性较好。

关键词: 纹理特征, 灰度共生矩阵, 聚类算法, 图像分割, 植物叶部病害

Abstract: To the complex algorithm of traditional plant leaf disease detection, this paper proposed a plant leaf disease detection algorithm based on GLCM texture feature extraction. As the research object of cucumber leaf anthracnose, the K-means clustering algorithm was used to perform image threshold segmentation, and the gray level co-occurrence matrix was used to extract the energy mean, entropy mean, contrast mean and correlation mean of the sample. With the parameter training, the area of disease-free area and diseased area parameters were determined, and then the disease condition of the sample was judged. The results showed that the algorithm had high efficiency and good robustness.

Key words: texture feature, gray level co-occurrence matrix, clustering algorithm, image segmentation, plant leaf disease

中图分类号: