[1] JIN H J,CHENG G D,LI X.Permafrost on the Qinghai-tibet Plateau under a changing climate[J].Chinese science bulletin,1999,44(S1):152-158. [2] FRAMPTON A,PAINTER S L,DESTOUNI G.Permafrost degradation and subsurface-flow changes caused by surface warming trends[J].Hydrogeology journal,2013,21(1):271-280. [3] ZHAO L,ZOU D F,HU G J,et al.Changing climate and the permafrost environment on the Qinghai-Tibet (Xizang) plateau[J].Journal citation reports,2020,31(3):396-405. [4] KUANG X X,JIAO J J.Review on climate change on the Tibetan Plateau during the last half century[J]. Journal of geophysical research atmospheres,2016:3979-4007. [5] 杨玉忠. 青藏公路沿线多年冻土区稳定同位素水文研究[D].北京:中国科学院大学,2014. [6] YAO Z J, LIU J,HUANG H Q,et al.Characteristics of isotope in precipitation, river water and lake water in the Manasarovar basin of Qinghai-Tibet Plateau[J].Environmental geology Berlin, 2008,57(3):551-556. [7] BOUCHER J L,CAREY S K.Exploring runoff processes using chemical, isotopic and hydrometric data in a discontinuous permafrost catchment[J].Hydrology research,2010,41(6):508-519. [8] 孔彦龙,庞忠和.高寒流域同位素径流分割研究进展[J].冰川冻土,2010,32(3):619-625. [9] 胡海英,包为民,瞿思敏,等.稳定性氢氧同位素在水体蒸发中的研究进展[J].水文,2007,27(3):1-5. [10] 南卓铜. 中国1∶1000万冻土区划及类型图[DB/OL].国家冰川冻土沙漠科学数据中心(http://www.ncdc.ac.cn/),2019. [11] 姚檀栋,周行,杨晓新.印度季风水汽对青藏高原降水和河水中δ18O高程递减率的影响[J].科学通报,2009,54(15):2124-2130. [12] GAO Z Y,NIU F J,LIN Z J, et al.Evaluation of thermokarst lake water balance in the Qinghai-Tibet Plateau via isotope tracers[J]. Science of the total environment, 2018,636(4):1-11. [13] LIANG S H,GUO J,WU P,et al.Hydrogeochemical and isotopic characteristics of surface water and groundwater in the Qinghai Lake catchment (China)[J].Arabian journal of geosciences,2020,13(3):135. [14] YU W S,YAO T D,TIAN L D, et al.Relationships between δ18O in summer precipitation and temperature and moisture trajectories at Muztagata, western China[J].Science in China series D volume,2006, 49(1):27-35. [15] 田立德,姚檀栋.青藏高原那曲河流域降水及河流水体中氧稳定同位素研究[J].水科学进展, 2002,13(2): 206-210. [16] 刘光生,王根绪,高洋,等.长江源多年冻土区季节性河流氢、氧同位素组成[J].生态学杂志,2015,34(6): 1622-1629. [17] 汪少勇,王巧丽,吴锦奎,等.长江源区降水氢氧稳定同位素特征及水汽来源[J].环境科学,2019, 40(6): 2615-2623. [18] 余武生,姚檀栋,田立德,等.青藏高原西部降水中δ18O变化特征[J].冰川冻土,2004,26(2):146-152. [19] LIU Y H,FAN N J,AN S Q,et al.Characteristics of water isotopes and hydrograph separation during the wet season in the Heishui river,China[J].Journal of hydrology,2008,35(3):314-321. [20] 王利辉,何晓波,丁永建.青藏高原中部高寒草甸蒸散发特征及其影响因素[J].冰川冻土,2019,41(4): 801-808. [21] ZHANG W G,CHENG B,HU Z B, et al.Using stable isotopes to determine the water sources in alpine ecosystems on the east Qinghai-Tibet plateau,China[J].Hydrological processes,2010, 24(22):3270-3280. [22] 常姝婷. 全球变暖背景下青藏高原夏季大气水汽特征及对区域气候的影响[D].兰州:兰州大学,2019. [23] LI R,ZHAO L,DING Y J,et al.Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region[J].Chinese science bulletin,2012,57(35):4609-4616. [24] 杨羽帆,曹生奎,冯起,等.青海湖沙柳河流域浅层地下水氢氧稳定同位素分布特征[J].中国沙漠,2019, 39(5):45-53. [25] 刘琴,王建力,田立德,等.季风前期青藏高原南北向河水稳定同位素空间变化特征[J].西南大学学报(自然科学版),2015,37(6):131-136. [26] 罗栋梁,金会军,林琳,等.黄河源区多年冻土温度及厚度研究新进展[J].地理科学,2012,32(7):898-904. [27] MCEACHERN P,PREPAS E E,CHANASYK D S.Landscape control of water chemistry in northern boreal streams of Alberta[J].Journal of hydrology,2006,323(1):303-324. [28] 程国栋,赵林,李韧,等.青藏高原多年冻土特征、变化及影响[J].科学通报,2019,64(27):2783-2795. [29] 汪少勇,何晓波,丁永建,等.长江源多年冻土区地下水氢氧稳定同位素特征及其影响因素[J].环境科学, 2020, 41(1):166-172. [30] 杨玉忠,吴青柏,贠汉伯.北麓河多年冻土区降水及河水稳定同位素特征分析[J].水科学进展,2013, 24(6):778-785. |