湖北农业科学 ›› 2022, Vol. 61 ›› Issue (7): 60-65.doi: 10.14088/j.cnki.issn0439-8114.2022.07.011

• 资源·环境 • 上一篇    下一篇

基于GA优化的RF-Softmax水质预测模型研究

董陈超, 田明昊, 赵伟朝   

  1. 河海大学商学院,江苏 常州 213022
  • 收稿日期:2021-02-26 出版日期:2022-04-10 发布日期:2022-05-04
  • 作者简介:董陈超(1999-),男,江苏扬州人,在读本科生,研究方向为数据挖掘和情报分析,(电话)19951081007(电子信箱)2605485335@qq.com。
  • 基金资助:
    河海大学中央高校基本科研业务费资助项目(2018B04614)

Research on water quality prediction model of RF-Softmax based on GA optimization

DONG Chen-chao, TIAN Ming-hao, ZHAO Wei-chao   

  1. Business School, Hohai University, Changzhou 213022, Jiangsu, China
  • Received:2021-02-26 Online:2022-04-10 Published:2022-05-04

摘要: 针对水质检测周期长、成本高等问题,提出了基于遗传算法优化的RF-Softmax水质预测模型。采用机器学习的方法,使用随机森林算法进行特征选择建立水样本中氨氮、总磷2项水质参数与水质类别的数学关系模型方法对水质类别进行预测。采用遗传算法替代传统Softmax回归算法训练过程中使用的梯度下降法,解决了逻辑回归算法在目标函数不是严格凸函数的情况下,容易陷入局部最优解的问题。以江阴市南闸街道地区地表水作为研究对象进行验证,结果表明,使用GA优化的RF-Softmax回归模型预测的准确率最高,其预测正确率相比传统Softmax回归和BP神经网络分别提高11.73和8.40百分点,平均误差分别降低58.68%和34.92%,平均均方根误差分别降低39.02%和23.62%。优化效果显著,能够实现高效、准确、低成本、快速的地表水质预测,为水质监测与预警提供了新思路,对于水质管理与环境保护具有重大意义。

关键词: 水质预测, 预测模型, 遗传算法, Softmax回归, 随机森林, 机器学习

Abstract: Aiming at the problems of long cycle and high cost of water quality detection, a RF-Softmax water quality prediction model based on genetic algorithm optimization was proposed. Using machine learning method and random forest algorithm for feature selection, the mathematical relationship model between ammonia nitrogen and total phosphorus in water samples and water quality categories was established to predict water quality categories. The genetic algorithm was used to replace the gradient descent method used in the training process of the traditional Softmax regression algorithm, which solved the problem that the logistic regression algorithm was easy to fall into the local optimal solution when the objective function was not strictly convex. The surface water in Nanzha street of Jiangyin city was used as the research object for verification. The results showed that the RF-Softmax regression model optimized by GA had the highest prediction accuracy. Compared with the traditional Softmax regression and BP neural network, the prediction accuracy increased by 11.73% and 8.40%, respectively, the mean error decreased by 58.68% and 34.92%, and the average root mean square errors decreased by 39.02% and 23.62%, respectively. The optimization effect is remarkable, which can realize efficient, accurate, low cost and fast surface water quality prediction. It provides a new idea for water quality monitoring and early warning, and is of great significance for water quality management and environmental protection.

Key words: water quality prediction, prediction model, genetic algorithm, Softmax regression, random forest, machine learning

中图分类号: