湖北农业科学 ›› 2022, Vol. 61 ›› Issue (4): 9-15.doi: 10.14088/j.cnki.issn0439-8114.2022.04.002

• 综述 • 上一篇    下一篇

基于计算机视觉技术的水稻病害图像识别研究进展

李辉1, 罗敏2, 岳佳欣1   

  1. 1.成都农业科技职业学院机电信息学院,成都 611130;
    2.四川水利职业技术学院信息工程系,四川 崇州 611200
  • 收稿日期:2021-03-25 出版日期:2022-02-25 发布日期:2022-03-18
  • 作者简介:李 辉(1981-),女,四川资中人,副教授,主要从事农业图像处理方面的研究,(电话)13880697468(电子信箱)lhdxl2005@163.com。
  • 基金资助:
    成都市哲学社会科学重点研究基地-成都水生态文明建设研究重点基地课题(SST2019-2020-18); 成都农业科技职业学院青年基金项目(20QN-05)

Research progress of recognition of rice disease images based on computer vision technology

LI Hui1, LUO Min2, YUE Jia-xin1   

  1. 1. Department of Electro-mehanicsl and Information, Chengdu Agricultural College, Chengdu 611130,China;
    2. Department of Information Engineering, Sichuan Water Conservancy Vocational College, Chongzhou 611200, Sichuan,China
  • Received:2021-03-25 Online:2022-02-25 Published:2022-03-18

摘要: 从病害图像采集、图像处理、特征提取、分类识别4个方面对水稻常见病害的识别方法和技术进行了综述研究,分析了一些典型方法的基本原理、关键技术、实现方法和应用效果,总结了该领域现有研究存在的问题与不足,对未来的发展趋势和研究方向进行了展望。采用计算机视觉技术对农作物病虫害进行识别,具有无损、快速、实时、准确等特点,对于加速农业现代化建设、提高生产效率有重要影响。随着移动通信技术、大数据、物联网、人工智能、遥感技术的高速发展,通用性广、稳定性强、精确度高、实时性强的自然环境下大面积农作物病虫害图像智能识别与防治、病虫害海量数据标准化处理是农作物病虫害识别未来的重要研究方向。

关键词: 水稻病害, 图像识别, 计算机视觉技术

Abstract: The recognition methods and technologies of common diseases were reviewed from four aspects, image acquisition, image processing, feature extraction and classification recognition. The basic principles, key technologies, implementation methods and application effects of some typical methods were analyzed. The problems and shortcomings of existing research in this field were summarized. The future development trends and research directions were prospected. Using computer vision technology to identify crop pests and diseases has the characteristics of nondestructive, rapid, real-time and accurate, which has a profound impact on accelerating agricultural modernization and improving production efficiency. With the rapid development of mobile communication technology, big data, internet of things, artificial intelligence and remote sensing technology, intelligent recognition and prevention of large area crop diseases and insect pests in natural environment with wide universality, strong stability, high accuracy and strong real-time performance, and standardized processing of mass data of diseases and insect pests are important research directions in the future.

Key words: rice disease, recognition of images, computer vision technology

中图分类号: