湖北农业科学 ›› 2021, Vol. 60 ›› Issue (23): 157-162.doi: 10.14088/j.cnki.issn0439-8114.2021.23.035

• 信息工程 • 上一篇    下一篇

基于Landsat 8 OLI数据的镜泊湖水体叶绿素a浓度反演

刘宇, 朱丹瑶   

  1. 牡丹江师范学院历史与文化学院,黑龙江 牡丹江 157012
  • 收稿日期:2021-04-02 出版日期:2021-12-10 发布日期:2021-12-21
  • 作者简介:刘宇(1985-),男,辽宁丹东人,讲师,硕士,主要从事环境遥感研究及教学工作,(电话)18604532723(电子信箱)308391826@qq.com。
  • 基金资助:
    黑龙江省教育厅基本科研业务费项目(1355MSYQN007); 牡丹江师范学院科研项目(QN2021005)

Inversion of Chl-a concentration in Jingpo lake based on Landsat 8 OLI data

LIU Yu, ZHU Dan-yao   

  1. College of History and Culture,Mudanjiang Normal University,Mudanjiang 157012,Heilongjiang,China
  • Received:2021-04-02 Online:2021-12-10 Published:2021-12-21

摘要: 为选择适合镜泊湖的叶绿素a遥感监测模型,结合2018年7月实测叶绿素a浓度与同步Landsat 8 OLI影像,建立了叶绿素a浓度简单线性模型(SLR)与多元线性模型(MLR),并根据拟合度和验证精度最优原则,评估了2种模型的预测效果。结果表明,包含4个波段的MLR模型(B2、B3、B4和B5波段)反演精度优于其他模型。从叶绿素a空间分布状况来看,镜泊湖中心地带为研究区的低值区,支流入湖口地带为研究区的高值区。

关键词: 镜泊湖, 叶绿素a, 遥感反演, 卫星影像, 湖泊水质

Abstract: In order to select the Chl-a remote sensing monitoring model suitable for Jingpo lake, combined with the measured Chl-a concentration in July 2018 and the synchronous Landsat 8 OLI image, this study established the Simple Linear Regression (SLR) and Multiple Linear Regression (MLR) of Chl-a concentration, and evaluated the prediction effects of the two models according to the principle of optimal fitting degree and verification accuracy. The results showed that the MLR model with four bands (B2, B3, B4 and B5 bands) has better inversion accuracy than other models. From the spatial distribution of Chl-a, the center of the lake is the low-value area, and the estuary of the river is the high-value area。

Key words: Jinpo lake, Chl-a, remote inversion, satellite imagery, lake water quality

中图分类号: