[1] FANG Y, RAMASAMY R P.Current and prospective methods for plant disease detection[J]. Biosensors, 2015, 5(3): 537-561. [2] MARTINELLI F, SCALENGHE R, DAVINO S, et al.Advanced methods of plant disease detection. A review[J]. Agronomy for sustainable development, 2015, 35(1): 1-25. [3] 张善文,张晴晴,李萍.基于改进深度卷积神经网络的苹果的病害识别[J].林业工程学报,2019,4(4):107-112. [4] 李先锋. 基于特征优化和多特征融合的杂草识别方法研究[D].江苏镇江:江苏大学,2010. [5] 赵川源,何东健,乔永亮. 基于多光谱图像和数据挖掘的多特征杂草识别方法[J].农业工程学报,2013,29(2):192-198. [6] 张恒,陈丽娟,张岩.模糊植物病虫害图像的检测[J].计算机仿真,2012,29( 1):199-201,220. [7] 李先锋,朱伟兴,纪滨,等.基于特征优化和LS-SVM的棉田杂草识别[J].农业机械学报,2010,41(11):168-172. [8] BRAHIMI M, ARSENOVIC M, LARABA S, et al.Deep learning for plant diseases: Detection and saliency map visualisation[J]. Human and machine learning, 2018,8:93-117. [9] 何晓萍,沈雅云.深度学习的研究现状与发展[J].现代情报,2017,37( 2):163-170. [10] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[J].Advances in neural information processing systems,2012,25(2):1097-1105. [11] SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[A].Proceedings of the IEEE conference on computer vision and pattern recognition[C].2015.1-9. [12] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J]. Preprint arXiv,2014:1-4. [13] HE K, ZHANG X, REN S, et al.Deep residual learning for image recognition[A].Proceedings of the IEEE conference on computer vision and pattern recognition[C].2016.770-778. [14] 王健,刘雪花.基于深度可分离卷积的苹果叶病理识别[J].计算机系统应用,2020,29(11):190-195. [15] 刘阗宇,冯全,杨森. 基于卷积神经网络的葡萄叶片病害检测方法[J].东北农业大学学报,2018,49(3):73-83. [16] 曹鹏. 不均衡数据分类方法的研究[D].沈阳:东北大学,2014. [17] 吴国琴. 迁移学习在图像分类中的应用研究[D].合肥:安徽大学,2017. [18] 龙明盛. 迁移学习问题与方法研究[D].北京:清华大学,2014. [19] GONG Y,WANG L, GUO R, et al.“Multi-scale orderless pooling of deep convolutional activation features,” in Proc[J]. Eur Conf Comput Vis, 2014,8695:392-407. [20] 刘扬. 基于MNCC模型的高分辨率遥感影像目标识别[D].郑州:河南大学,2016. [21] 王阳,刘立波.面向细粒度图像分类的双线性残差注意力网络[J].激光与光电子学进展,2020,57(12):171-180. [22] 黄斌,卢金金,王建华,等.基于深度卷积神经网络的物体识别算法[J].计算机应用,2016,36(12):3333-3340,3346. [23] 郭树旭,马树志,李晶,等.基于全卷积神经网络的肝脏CT影像分割研究[J].计算机工程与应用,2017,53(18):126-131. |