湖北农业科学 ›› 2021, Vol. 60 ›› Issue (8): 12-16.doi: 10.14088/j.cnki.issn0439-8114.2021.08.002
姜雅婷
收稿日期:
2020-05-15
发布日期:
2021-05-07
作者简介:
姜雅婷(1995-),女,山西朔州人,在读硕士研究生,研究方向为结构生物学,(电话)15222517911(电子信箱)3013226004@tju.edu.cn。
JIANG Ya-ting
Received:
2020-05-15
Published:
2021-05-07
摘要: 线粒体自噬广泛存在于动物、植物以及酵母中,对于维持细胞中线粒体的平衡有重要作用。与酵母和哺乳动物线粒体自噬的研究进展相比,植物线粒体自噬的研究尚处于早期,对于植物线粒体自噬的机制和自噬过程中参与的蛋白还不清楚。对线粒体自噬在植物中的研究进展进行了综述,回顾了植物中的线粒体自噬调控机制以及相关的受体、蛋白酶和生物学功能,为后期对于植物线粒体自噬的研究提供借鉴。
中图分类号:
姜雅婷. 线粒体自噬在植物中的研究进展[J]. 湖北农业科学, 2021, 60(8): 12-16.
JIANG Ya-ting. Research progress of mitophagy in plants[J]. HUBEI AGRICULTURAL SCIENCES, 2021, 60(8): 12-16.
[1] AKEN O V, BREUSEGEM F V.Licensed to kill:Mitochondria, chloroplasts, and cell death[J]. Trends in plant science, 2015, 20(11): 754-766. [2] NG S, CLERCQ I D, AKEN O V.Anterograde and retrograde regulation of nuclear genes encoding mitochondrial proteins during growth, development, and stress[J]. Molecular plant, 2014, 7(7): 1075-1093. [3] 李明熹, 屈艺, 母得志. 线粒体自噬对新生大鼠缺氧缺血脑损伤的影响[J]. 中国当代儿科杂志, 2017, 19(2): 242-249. [4] OZSVARI B, SOTGIA F, LISANTI M P.A new mutation-independent approach to cancer therapy:Inhibiting oncogenic RAS and MYC, by targeting mitochondrial biogenesis[J]. Aging, 2017, 9(10): 2098-2116. [5] CHEN M H, LIU L F, CHEN Y R, et al.Expression of α-amylases, carbohydrate metabolism, and autophagy in cultured rice cells is coordinately regulated by sugar nutrient[J]. The plant journal, 1994, 6(5): 625-636. [6] YUJI M, YOSHINORI O.Autophagy in tobacco suspension-cultured cells in response to sucrose starvation[J]. Plant physiology, 1996, 111(4): 1233-1241. [7] TOYOOKA K,OKAMOTO T, MINAMIKAWA T.Cotyledon cells of [8] KWON S I, HONG J C, JIN H J, et al.The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in [9] WERTMAN J, LORD C E, DAUPHINEE A N, et al.The pathway of cell dismantling during programmed cell death in lace plant ( [10] BI F C, LIU Z, WU J X, et al.Loss of ceramide kinase in arabidopsis impairs defenses and promotes ceramide accumulation and mitochondrial H2O2 bursts[J]. Plant cell,2014,26(8):3449-3467. [11] LI L, NELSON C, FENSKE R, et al.Changes in specific protein degradation rates in [12] LI F, CHUNG T, VIERSTRA R D.AUTOPHAGY-RELATED11 plays a critical role in general autophagy-and senescence-induced mitophagy in [13] AUBERT S, GOUT E, BLIGNY R, et al.Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation:Control by the supply of mitochondria with respiratory substrates[J]. The journal of cell biology, 1996, 133(6): 1251-1263. [14] HAYWARD A P, TSAO J, DINESH-KUMAR S P. Autophagy and plant innate immunity: Defense through degradation[J]. Seminars in cell & developmental biology, 2009, 20(9): 1041-1047. [15] MEIJER W H, KLEI I J V D, VEENHUIS M, et al. ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes[J]. Autophagy, 2007, 3(2): 106-116. [16] REUMANN S, VOITSEKHOVSKAJA O, LILLO C.From signal transduction to autophagy of plant cell organelles:Lessons from yeast and mammals and plant-specific features[J]. Protoplasma, 2010, 247(3-4): 233-256. [17] BRODA M, MILLAR A H, AKEN O V.Mitophagy:A mechanism for plant growth and survival[J]. Trends in plant science, 2018, 23(5): 434-450. [18] CALLEGARI S, OELJEKLAUS S, WARSCHEID B, et al.Phospho-ubiquitin-PARK2 complex as a marker for mitophagy defects[J]. Autophagy, 2017, 13(1): 201-211. [19] SEKINE S, YOULE R J.PINK1 import regulation:A fine system to convey mitochondrial stress to the cytosol[J]. BMC biology, 2018, 16(1): 2. [20] WU W, TIAN W, HU Z, et al.ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy[J]. Embo Reports, 2014, 15(5): 566-575. [21] KANKI T, WANG K, CAO Y, et al.Atg32 is a mitochondrial protein that confers selectivity during mitophagy[J]. Developmental cell, 2009, 17(1): 98-109. [22] OKAMOTO K, KONDO-OKAMOTO N, OHSUMI Y.Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy[J]. Developmental cell, 2009, 17(1): 87-97. [23] KANKI T, KLIONSKY D J, OKAMOTO K.Mitochondria autophagy in yeast[J]. Antioxidants & redox signaling, 2011, 14(10): 1989-2001. [24] AOKI Y, KANKI T, HIROTA Y, et al.Phosphorylation of serine 114 on Atg32 mediates mitophagy[J]. Molecular biology of the cell, 2011, 22(17): 3206-3217. [25] KANKI T, KURIHARA Y, JIN X, et al.Casein kinase 2 is essential for mitophagy[J]. Embo reports, 2013, 14(9): 788-794. [26] OKAMOTO K.Organellophagy:Eliminating cellular building blocks via selective autophagy[J]. Journal of cell biology, 2014, 205(4): 435-445. [27] HIROTA Y, KANG D, KANKI T.The physiological role of mitophagy:New insights into phosphorylation events[J]. Int J Cell Biol, 2012, 2012(2012): 354914. [28] 王志舒, 谭晓荣, 刘洹洹. 线粒体自噬调控机制研究进展[J]. 生物技术通报, 2015, 31(6): 42-47. [29] LI F, VIERSTRA R D.Arabidopsis ATG11, a scaffold that links the ATG1-ATG13 kinase complex to general autophagy and selective mitophagy[J]. Autophagy, 2014, 10(8): 1466-1467. [30] YORIMITSU T, KLIONSKY D J.Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway[J]. Molecular biology of the cell, 2005, 16(4): 1593-1605. [31] MIZUSHIMA N.The role of the Atg1/ULK1 complex in autophagy regulation[J]. Current opinion in cell biology, 2010, 22(2):132-139. [32] SUTTANGKAKUL A, LI F, CHUNG T, et al.The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis[J]. Plant cell, 2011, 23(10): 3761-3779. [33] DOELLING J H, WALKER J M, FRIEDMAN E M, et al.The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in [34] LIU Y, BASSHAM D C.Autophagy: Pathways for self-eating in plant cells[J]. Annual review of plant biology, 2012, 63(1): 215-237. [35] RYABOVOL V V, MINIBAYEVA F V.Molecular mechanisms of autophagy in plants:Role of ATG8 proteins in formation and functioning of autophagosomes[J]. Biochemistry, 2016, 81(4): 348-363. [36] XIE Q, TZFADIA O, LEVY M, et al.hfAIM: A reliable bioinformatics approach for in silico genome-wide identification of autophagy-associated Atg8-interacting motifs in various organisms[J]. Autophagy, 2016, 12(5): 876-887. [37] DUNCAN O, TAYLOR N L, CARRIE C, et al.Multiple lines of evidence localize signaling, morphology, and lipid biosynthesis machinery to the mitochondrial outer membrane of [38] ROBERTS D J, TAN-SAH V P, DING E Y, et al. Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition[J]. Molecular cell, 2014, 53(4): 521-533. [39] GEISLER S, HOLMSTRÖM K M, SKUJAT D, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM[J]. Nature cell biology, 2010, 12(2): 119-131. [40] GREENE A W, GRENIER K, AGUILETA M A, et al.Mitochondrial processing peptidase regulates PINK1 processing, import and parkin recruitment[J]. Embo reports, 2012, 13(4): 378-385. [41] LAZAROU M, JIN S M, KANE L A, et al.Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase parkin[J]. Developmental cell, 2012, 22(2): 320-333. [42] HOOPER C M, CASTLEDEN I R, TANZ S K, et al.SUBA4: The interactive data analysis centre for [43] APWEILER R, BAIROCH A, WU C H, et al.UniProt: The universal protein knowledgebase[J]. Nuclc acids research, 2004, 32: 115-119. [44] JIN S M, LAZAROU M, WANG C, et al.Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL[J]. Journal of cell biology, 2010, 191(5): 933-942. [45] FORTE M, BIANCHI F, COTUGNO M, et al.Pharmacological restoration of autophagy reduces hypertension-related stroke occurrence[J]. Autophagy, 2019, 12: 1-14. [46] ZHANG S, LI C, WANG R, et al.The [47] TEARDO E, CARRARETTO L, WAGNER S, et al.Physiological characterization of a plant mitochondrial calcium uniporter in vitro and in vivo[J]. Plant physiology, 2017, 173(2): 1355-1370. [48] HERLAN M,VOGEL F,BORNHOVD C,et al.Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA[J]. Journal of biological chemistry, 2003, 278(30): 27781-27788. [49] MCQUIBBAN G A,SAURYA S,FREEMAN M.Mitochondrial membrane remodelling regulated by a conserved rhomboid proteas[J]. Nature, 2003, 423(6939): 537-541. [50] SESAKI H,SOUTHARD S M,HOBBS A E A,et al. Cells lacking Pcp1p/Ugo2p,a rhomboid-like protease required for Mgm1p processing, lose mtDNA and mitochondrial structure in a Dnm1p-dependent manner,but remain competent for mitochondrial fusion[J].Biochemical and biophysical research communications,2003,308(2): 276-283. [51] KMIEC-WISNIEWSKA B, KRUMPE K, URANTOWKA A, et al.Plant mitochondrial rhomboid, AtRBL12, has different substrate specificity from its yeast counterpart[J]. Plant molecular biology, 2008, 68(1-2): 159-171. [52] KNOPF R R, FEDER A, MAYER K, et al.Rhomboid proteins in the chloroplast envelope affect the level of allene oxide synthase in [53] BASAK I, PAL R, PATIL K S, et al. [54] MØLLER I M, SWEETLOVE L J. ROS signalling——specificity is required[J]. Trends in plant science, 2010, 15(7): 370-374. [55] HAYNES C M, RON D.The mitochondrial UPR——protecting organelle protein homeostasis[J]. Journal of cell science, 2010, 123(22): 3849-3855. [56] WANG X, AUWERX J.Systems phytohormone responses to mitochondrial proteotoxic stress[J]. Molecular cell, 2017, 68(3): 540-551. [57] PALIKARAS K, LIONAKI E, TAVERNARAKIS N.Coordination of mitophagy and mitochondrial biogenesis during ageing in [58] NG S, CLERCQ I D, AKEN O V, et al.Anterograde and retrograde regulation of nuclear genes encoding mitochondrial proteins during growth, development, and stress[J]. Molecular plant, 2014, 7(7): 1075-1093. [59] KUBLI D A, GUSTAFSSON Å B.Mitochondria and mitophagy: The Yin and Yang of cell death control[J]. Circulation research, 2012, 111(9): 1208-1221. [60] MININA E A, BOZHKOV P V, HOFIUS D.Autophagy as initiator or executioner of cell death[J]. Trends in plant science, 2014, 19(11): 692-697. [61] JONES A.Does the plant mitochondrion integrate cellular stress and regulate programmed cell death?[J]. Trends in plant science, 2000, 5(5): 225-230. [62] BALK J, LEAVER C J.The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release[J]. The plant cell, 2001, 13(8): 1803-1818. [63] LEMASTERS J J, QIAN T, BRADHAM C A, et al.Mitochondrial dysfunction in the pathogenesis of necrotic and apoptotic cell death[J]. Journal of bioenergetics & biomembranes, 1999, 31(4): 305-319. [64] KOBAYASHI H, IKEDA T M, NAGATA K.Spatial and temporal progress of programmed cell death in the developing starchy endosperm of rice[J]. Planta, 2013, 237(5): 1393-1400. |
[1] | 高富涛, 孙淑君, 游秀峰, 窦涛, 蔡玉彪, 周琳, 刘向阳. 肉桂精油和姜黄油对四种植物病原菌的抑制作用[J]. 湖北农业科学, 2023, 62(9): 74-77. |
[2] | 李飞飞, 魏悦, 于立芹, 张桃桃, 宋梦娇, 朱杰, 范毅. 亚麻荠植株营养及功能成分质量评价[J]. 湖北农业科学, 2023, 62(7): 126-129. |
[3] | 武圆梦, 罗立群, 唐娟. 徐州九里湖人工湿地生态修复的植物规划[J]. 湖北农业科学, 2023, 62(6): 100-105. |
[4] | 陈斌, 林煜, 樊海平, 薛凌展, 元丽花, 钟全福. 植物炭黑对九种水产致病菌的抑制和吸附效果[J]. 湖北农业科学, 2023, 62(6): 125-128. |
[5] | 张威, 祁进康, 李晋芳, 胡世俊, 闫晓慧. 薇甘菊化学成分对六种核桃病原真菌的抑菌活性[J]. 湖北农业科学, 2023, 62(5): 66-72. |
[6] | 黄嘉诚, 刘宏涛, 陈媛媛, 吕文君, 罗晶. 基于CiteSpace的中国花境研究知识图谱分析[J]. 湖北农业科学, 2023, 62(5): 92-99. |
[7] | 柴晓贞, 刘书敏. HCO3-Ca型岩溶湖附着藻类生长对沉水植物退化的驱动研究[J]. 湖北农业科学, 2023, 62(4): 20-26. |
[8] | 鲁万桥, 李培伦, 刘伟, 唐富江, 王继隆. 大麻哈鱼产卵场呼玛河段水域优势水生植物氮、磷吸收率初探[J]. 湖北农业科学, 2023, 62(4): 27-31. |
[9] | 王潓琳, 刘新平. 耕地多功能评价研究[J]. 湖北农业科学, 2023, 62(3): 125-129. |
[10] | 刘龙龙, 王凡, 张冰心. 商洛市秦岭特色小镇旅游功能评价体系构建[J]. 湖北农业科学, 2023, 62(2): 74-78. |
[11] | 李彩玉, 袁永生. 甘肃省乡村“三生”功能耦合协调水平及影响因素分析[J]. 湖北农业科学, 2023, 62(2): 150-154. |
[12] | 曾炜, 朱克甲. 废弃矿井转型智慧植物工厂的技术应用[J]. 湖北农业科学, 2023, 62(11): 170-175. |
[13] | 刘帅, 赵燕楚, 黄艳凤, 张邓壮, 石雅峰. 忻州市秋季浮游植物多样性分析及评价[J]. 湖北农业科学, 2023, 62(10): 37-44. |
[14] | 琚玉枫, 田建林, 丁彬彬, 曾婷. 基于GIS的武陵源风景区峰林顶部植物群落稳定性评价[J]. 湖北农业科学, 2023, 62(10): 51-57. |
[15] | 苟小林, 康馨文, VLADIMIROV Dmitrii, 陈青松, 王亚婷, 樊华, 涂卫国. 成都市湿地外来植物分布与扩散潜力研究[J]. 湖北农业科学, 2023, 62(10): 74-82. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||