湖北农业科学 ›› 2021, Vol. 60 ›› Issue (6): 119-122.doi: 10.14088/j.cnki.issn0439-8114.2021.06.025

• 信息工程 • 上一篇    下一篇

基于深度GRU神经网络的逐小时气温预报模型

罗宇1, 罗林艳2, 范嘉智1, 段思汝1, 高文娟1   

  1. 1.中国气象局气象干部培训学院湖南分院,长沙 410125;
    2.湖南省气象信息中心,长沙 410118
  • 收稿日期:2020-06-04 出版日期:2021-03-25 发布日期:2021-04-07
  • 作者简介:罗 宇(1984-),男,四川巴中人,高级工程师,主要从事大气遥感与探测研究,(电话)18075183271(电子信箱)mariachi41@qq.com。
  • 基金资助:
    湖南省气象局面上科研项目(XQKJ19B053; XQKJ19B066)

An hourly prediction model of air temperature based on deep GRU neural network

LUO Yu1, LUO Lin-yan2, FAN Jia-zhi1, DUAN Si-ru1, GAO Wen-juan1   

  1. 1. China Meteorological Administration Training Center Hunan Branch, Changsha 410125, China;
    2. Hunan Provincial Meteorological Information Center, Changsha 410118, China
  • Received:2020-06-04 Online:2021-03-25 Published:2021-04-07

摘要: 基于深度门控循环(GRU)神经网络,利用地面气象要素小时资料(气温、气压、露点温度、相对湿度和水汽压)建立湖南石门未来24 h逐小时气温预报模型,并对模型精度进行分析。结果表明,深度GRU逐小时气温模型预报精度随预报时次的增加逐步下降,决定系数(R2)为0.996~0.906、平均绝对误差(MAE)为0.359~1.974和均方根误差(RMSE)为0.510~2.562 ℃,24 h气温预报准确率为62.529%,优于滑动平均自回归(ARIMA)气温预报模型,且能较好体现气温转折性变化。利用深度GRU模型对2019年4月至7月湖南省石门县逐小时气温进行预报,与欧洲中心和日本数值预报产品进行对比发现,其3、6和9 h的预报精度均优于数值预报,可为12 h内气温短临预报技术提供一种有效的补充。

关键词: 深度学习, GRU, 逐小时气温预报, 石门地区

Abstract: Base on deep gated recurrent unit (GRU) neural network, an hourly prediction model of air temperature in Shimen county are proposed by using hourly surface meteorological data (air temperature, air pressure, dew point temperature, relative humidity and water vapor pressure), besides the accuracy of the model is analyzed. As the result indicated, the accuracy of the deep GRU model gradually declines with the prediction horizons, whose coefficients of determination, mean absolute error, mean values of root square error and the prediction accuracy are 0.996~0.906, 0.359~1.974, 0.510~2.562 ℃ and 62.529% respectively, which has higher performance than the prediction model based on autoregressive integrated moving average (ARIMA), and reflects turning changes of air temperature as well. The hourly air temperature prediction accuracies in Shimen from April to July in 2019 are contrasted of the deep GRU model and numerical weather predictions (NWPs) from European Center in addition to Japan. The result shows that the deep GRU model would be a beneficial supplement to the air temperature short-impending prediction within 12 hours due to its prediction accuracies are all better than NWPs in 3, 6 and 9 h horizons.

Key words: deep learning, GRU, hourly air temperature prediction, Shimen area

中图分类号: