湖北农业科学 ›› 2021, Vol. 60 ›› Issue (6): 42-48.doi: 10.14088/j.cnki.issn0439-8114.2021.06.008

• 资源·环境 • 上一篇    下一篇

基于逻辑回归模型的汶川地震灾区崩塌滑坡易发性评估

杨伟华, 杨志强, 赵建林, 梁咏琪   

  1. 长安大学地质工程与测绘学院,西安 710054
  • 收稿日期:2020-12-21 出版日期:2021-03-25 发布日期:2021-04-07
  • 通讯作者: 杨志强(1961-),男,陕西西安人,教授,博士,主要从事地壳形变监测与地球动力学、地质灾害监测方面的研究,(电子信箱)yang_gps@chd.edu.cn。
  • 作者简介:杨伟华(1996-),男,浙江衢州人,在读硕士研究生,研究方向为地理信息和地质灾害,(电话)18829890851(电子信箱)949601300@qq.com。
  • 基金资助:
    陕西省重点研发计划项目(2018SF-381); 陕西省自然科学基金项目(2019JQ-668); 中央高校基本科研业务费专项资金项目(300102260206)

Research on the risk of collapse and landslide in Wenchuan earthquake disaster area based on logistic regression model

YANG Wei-hua, YANG Zhi-qiang, ZHAO Jian-lin, LIANG Yong-qi   

  1. School of Geology Engineering and Geomatics, Chang’an University, Xi’an 710054, China
  • Received:2020-12-21 Online:2021-03-25 Published:2021-04-07

摘要: 选取了汶川地震灾区的22个县作为研究区域,基于6 007条崩滑数据和多源信息,利用GIS技术手段,选取高程、坡度、坡向、断层、岩性、降雨量和土地利用7个因子作为崩滑易发性评价的影响因子,基于逻辑回归模型进行崩滑易发性评估并生成易发性分区图。结果表明,历史崩滑点分布与崩滑易发性分区图拟合程度较好,该地区的汶川县、茂县、北川县、绵竹市、青川县、平武县为崩滑易发性较高的区域。采用ROC曲线对模型成功率和预测率进行评价,求得训练样本集的AUC(ROC曲线下与坐标轴围成的面积)为0.84,验证样本集的AUC为0.79,表明采用的逻辑回归模型预测准确率较高。

关键词: 汶川地震灾区, 崩塌, 滑坡, 逻辑回归模型, 易发性评估

Abstract: 22 counties in the Wenchuan earthquake disaster area were selected as the study area. Based on 6 007 collapse and landslides data and multi-source information, using GIS technology, seven factors including elevation, slope, aspect, fault, lithology, rainfall, and land use were selected as the influencing factors for the evaluation of collapse and landslide susceptibility. Then based on the logistic regression model, the susceptibility to collapse was evaluated, and a susceptibility zone map generated. The results showed that the distribution of historical collapse and landslide points fitted well with the zoning map of collapse and landslide susceptibility. Wenchuan county, Mao county, Beichuan county, Mianzhu city, Qingchuan county, and Pingwu county in this area were areas with high susceptibility to collapse and landslides. The ROC curve was used to evaluate the success rate and prediction rate of the model, and the AUC (Area under curve) of the training sample set was 0.84, and the AUC of the verification sample set was 0.79, indicating that the logistic regression model used in this paper had a high prediction accuracy.

Key words: Wenchuan earthquake disaster area, collapse, landslide, logistic regression model, susceptibility assessment

中图分类号: