湖北农业科学 ›› 2021, Vol. 60 ›› Issue (2): 158-160.doi: 10.14088/j.cnki.issn0439-8114.2021.02.033

• 信息工程 • 上一篇    下一篇

基于YOLOv3网络的小麦麦穗检测及计数

郝王丽, 尉培岩, 韩猛, 张丽, 席瑞泽   

  1. 山西农业大学软件学院,山西 太谷 030801
  • 收稿日期:2020-03-06 出版日期:2021-01-25 发布日期:2021-02-07
  • 作者简介:郝王丽(1989-),女,山西稷山人,讲师,博士,主要从事智慧农业研究,(电话)18701009770(电子信箱)hanmeng10@126.com。
  • 基金资助:
    山西农业大学青年基金项目(20142-09); 山西省高等学校科技创新项目(2020L0154)

Detection and counting of wheat ears based on YOLOv3 network

HAO Wang-li, WEI Pei-yan, HAN Meng, ZHANG Li, XI Rui-ze   

  1. School of Software, Shanxi Agricultural University, Taigu 030801,Shanxi,China
  • Received:2020-03-06 Online:2021-01-25 Published:2021-02-07

摘要: 小麦(Triticum aestivum L.)麦穗检测及计数对小麦产量估计及育种至关重要,但传统小麦麦穗数量统计都是基于人工统计的方法或遥感预测等方法,效率低且准确率差。为解决上述问题,提出了基于YOLOv3的深度神经网络小麦检测方法。结果表明,YOLOv3在3种常见的小麦品种上检测平均精度mAP值为 67.81%,麦穗计数准确率为93%,该方法可快速高效地检测特定标注框中的小麦麦穗。

关键词: 小麦(Triticum aestivum L.)麦穗, YOLOv3网络, 麦穗检测, 麦穗计数

Abstract: Wheat ear detection and counting are very important for wheat yield estimation and breeding. However, traditional wheat ear quantity statistics are based on manual statistical methods or remote sensing prediction methods, which are inefficient and not accurate. In order to solve the above problems, this paper proposes a wheat detection method based on YOLOv3 deep neural network. The results showed that YOLOv3 has achieved an average accuracy mAP value of 67.81% and an accuracy rate of 93% for wheat ear counting on three common wheat varieties, which can quickly and efficiently detect wheat ears in a specific label box.

Key words: wheat ear, YOLOv3 network, wheat ear detection, wheat ear counting

中图分类号: