湖北农业科学 ›› 2020, Vol. 59 ›› Issue (23): 81-86.doi: 10.14088/j.cnki.issn0439-8114.2020.23.019

• 园艺·特产 • 上一篇    下一篇

基于化学成分的烟叶感官舒适性预测模型

闫铁军1, 陈思蒙2, 周红审1, 许自成2, 庞哲1, 刘文锋1, 潘婷婷1, 邵惠芳2   

  1. 1.湖北中烟工业有限责任公司,武汉 430040;
    2.河南农业大学烟草学院,郑州 450002
  • 收稿日期:2020-09-24 出版日期:2020-12-10 发布日期:2020-12-30
  • 通讯作者: 周红审(1982-),工程师,主要从事卷烟产品维护工作,(电子信箱)zhouhs@hbtobacco.cn
  • 作者简介:闫铁军(1980-),男,河南漯河人,高级农艺师,硕士,主要从事卷烟产品研发与烟叶原料应用研究工作,(电话)13995584568(电子信箱)114461411@qq.com
  • 基金资助:
    湖北中烟工业有限责任公司项目(2018420000340444)

Prediction model of tobacco leaf sensory comfort based on chemical composition

YAN Tie-jun1, CHEN Si-meng2, ZHOU Hong-shen1, XU Zi-cheng2, PANG Zhe1, LIU Wen-feng1, PAN Ting-ting1, SHAO HUI-fang2   

  1. 1. Hubei China Tobacco Industry Co.,Ltd.,Wuhan 430040,China;
    2. College of Tobacco,Henan Agricultural University,Zhengzhou 450002,China
  • Received:2020-09-24 Online:2020-12-10 Published:2020-12-30

摘要: 为提高卷烟感官质量舒适性评价的有效性,以中国主产烟区2019年的170份烤烟标准样品为材料,基于烟叶中的常规化学成分以及多酚类化合物,先采用描述性统计和简单相关性分析对化学成分进行统计及分析,后采用主成分分析方法对化学成分进行筛选,进而运用逐步回归分析方法对卷烟感官舒适性的预测建立模型。结果表明,构建的模型所得到的预测结果与真实值之间误差较小,结果相对稳定。由此可知,运用主成分-逐步回归分析方法建立的烟叶感官舒适性预测模型具有较高的准确性与可行性。

关键词: 卷烟, 化学成分, 感官舒适性, 主成分分析, 逐步回归分析, 预测模型

Abstract: To improve the effectiveness of evaluation of cigarette sensory quality comfort,170 standard samples of flue-cured tobacco in China's main tobacco-producing areas in 2019 were selected as materials.Based on the conventional chemical components and polyphenol compounds in the tobacco leaves,the descriptive statistics and simple correlation analysis were first used to analyze the chemical components.Then,the principal component analysis method was used to screen the chemical components,and then the stepwise regression analysis method was used to establish a model for the prediction of cigarette sensory comfort.Results showed that,compared with the real value,the prediction result obtained by the model had smaller error,and the result was relatively stable.Which indicate that the prediction model of tobacco sensory comfort established by principal component-stepwise regression analysis method has high accuracy and feasibility.

Key words: cigarette, chemical composition, sensory comfort, principal component analysis, stepwise regression analysis, prediction model

中图分类号: