[1] BEIL-WAGNER J,DÖSSINGER G,SCHOBER K,et al. T cell-specific inactivation of mouse CD2 by CRISPR/Cas9[J]. Sci Rep,2016,6:21377. [2] YIN Y J,HAO H Y,XU X B,et al.Generation of an MC3R knock-out pig by CRSPR/Cas9 combined with somatic cell nuclear transfer (SCNT) technology[J]. Lipids Health Dis,2019,18:122. [3] IKEDA M,MATSUYAMA S,AKAGI S,et al.Correction of a disease mutation using CRISPR/Cas9-assisted genome editing in Japanese black cattle[J]. Sci Rep,2017,7:17827. [4] VILARINO M,RASHID S T,SUCHY F P,et al.CRISPR/Cas9 microinjection in oocytes disables pancreas development in sheep[J]. Sci Rep,2017,7:17472. [5] MA K,HAN J L,HAO Y,et al.An effective strategy to establish a male sterility mutant mini-library by CRISPR/Cas9-mediated knockout of anther-specific genes in rice[J]. J Genet Genomics,2019,46(5):273-275. [6] RYDER P,MCHALE M,FORT A,et al.Generation of stable nulliplex autopolyploid lines of Arabidopsis thaliana using CRISPR/Cas9 genome editing[J]. Plant Cell Rep,2017,36(6):1005-1008. [7] HIROHATA A,SATO I,KAINO V,et al.CRISPR/Cas9-mediated homologous recombination in tobacco[J]. Plant Cell Rep,2019,38(4):463-473. [8] FENG C,SU H D,BAI H,et al.High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize[J]. Plant Biotechnol J,2018,16(11):1848-1857. [9] LIANG Z,CHEN K L,LI T D,et al.Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes[J]. Nat Commun,2017,8:14261. [10] OTA S,HISANO Y,IKAWA Y,et al.Multiple genome modifications by the CRISPR/Cas9 system in zebrafish[J]. Genes to cells,2014,19(7):555-564. [11] LIU M J,REHMAN S,TANG X D,et al.Methodologies for improving HDR efficiency[J]. Front Genet,2019,9:691. [12] KOMOR A C,KIM Y B,PACKER M S,et al.Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature,2016,533:420-424. [13] GAUDELLI N M,KOMOR A C,REES H A,et al.Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature,2017,551:464-471. [14] JIANG W,FENG S J,HUANG S S,et al.BE-PLUS: A new base editing tool with broadened editing window and enhanced fidelity[J]. Cell Res,2018,28(8):855-861. [15] FAGAGNA DI F D,WELLER G R,DOHERTY A J,et al. The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku[J]. EMBO Rep,2003,4(1):47-52. [16] LIU Z,LU Z Y,YANG G,et al.Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing[J]. Nat Commun,2018,9(1):2338. [17] ZHANG Y H,QIN W,LU X C,et al.Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system[J]. Nat Commun,2017,8(1):118. [18] YANG J P,LI J Y,SUZUKI K,et al.Genetic enhancement in cultured human adult stem cells conferred by a single nucleotide recoding[J]. Cell Res,2017,27(9):1178-1181. [19] YAN F,KUANG Y J,REN B,et al.Highly efficient A·T to G·C base editing by Cas9n-Guided tRNA adenosine deaminase in rice[J]. Mol Plant,2018,11(4):631-634. [20] ZONG Y,WANG Y P,LI C,et al.Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion[J]. Nat Biotechnol,2017,35(5):438-440. [21] NIU D,WEI H J,LIN L,et al.Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9[J]. Science,2017,357(6357):1303-1307. [22] YAN S,TU Z C,LIU Z M,et al. A huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington's disease[J]. Cell,2018,173(4):989-1002.e13. [23] HUANG L,HUA Z D,XIAO H W,et al.CRISPR/Cas9-mediated ApoE-/- and LDLR-/- double gene knockout in pigs elevates serum LDL-C and TC levels[J]. Oncotarget,2017,8(23):37751-37760. [24] YU H H,ZHAO H,QING Y B,et al.Porcine zygote injection with Cas9/sgRNA results in DMD-Modified pig with muscle dystrophy[J]. Int J Mol Sci,2016,17(10):1668. [25] LI Z F,DUAN X Y,AN X M,et al.Efficient RNA-guided base editing for disease modeling in pigs[J]. Cell Discov,2018,4:64. [26] XIE J K,GE W K,LI N,et al.Efficient base editing for multiple genes and loci in pigs using base editors[J]. Nat Commun,2019,10(1):2852. [27] NISHIDA K,ARAZOE T,YACHIE N,et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems[J]. Science,2016,353(6305):aaf8729. [28] LU Y M,ZHU J K.Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system[J]. Mol Plant,2017,10(3):523-525. [29] KIM K,RYU S M,KIM S T,et al.Highly efficient RNA-guided base editing in mouse embryos[J]. Nat Biotechnol,2017,35(5):435-437. [30] CAO F,XIE X Y,GOLLAN T,et al.Comparison of gene-transfer efficiency in human embryonic stem cells[J]. Mol Imaging Biol,2010,12(1):15-24. [31] ROSS J W,WHYTE J J,ZHAO J G,et al.Optimization of square-wave electroporation for transfection of porcine fetal fibroblasts[J]. Transgenic Res,2010,19(4):611-620. [32] MAURISSE R,DE SEMIR D,EMAMEKHOO H,et al.Comparative transfection of DNA into primary and transformed mammalian cells from different lineages[J]. BMC Biotechnol,2010,10:9. [33] LIANG P P,SUN H W,ZHANG X Y,et al.Effective and precise adenine base editing in mouse zygotes[J]. Protein & cell,2018,9(9):808-813. |