[1] BOHMERT K,CAMUS I,BELLINI C,et al.AGO1 defines a novel locus of Arabidopsis controlling leaf development[J]. Embo J,1998,17(1):170-180. [2] SWARTS DC,MAKAROVA K,WANG Y,et al.The evolutionary journey of Argonaute proteins[J]. Nat Struct Mol Biol,2014,21(9): 743-753. [3] KOONIN E V.Evolution of RNA-and DNA-guided antivirus defense systems in prokaryotes and eukaryotes: Common ancestry vs convergence[J]. Biol Direct,2017,12(1):5. [4] ZARATIEGUI M,IRVINE D V,MARTIENSSEN R A.Noncoding RNAs and gene silencing[J]. Cell,2007,128(4):763-776. [5] OLINA A V,KULBACHINSKIY A V,ARAVIN A A,et al.Argonaute proteins and mechanisms of RNA interference in eukaryotes and prokaryotes[J]. Biochemistry (Mosc),2018,83(5): 483-497. [6] ZHANG H,XIA R,MEYERS B C,et al.Evolution, functions, and mysteries of plant ARGONAUTE proteins[J]. Curr Opin Plant Biol, 2015,27: 84-90. [7] DRINNENBERG I A,WEINBERG D E,XIE K T,et al.RNAi in budding yeast[J]. Science, 2009, 326(5952): 544-550. [8] TOLIA N H,JOSHUA-TOR L.Slicer and the Argonautes[J]. Nat Chem Biol, 2007, 3(1): 36-43. [9] RIVAS F V,TOLIA N H,SONG J J,et al.Purified Argonaute2 and an siRNA form recombinant human RISC[J]. Nat Struct Mol Biol, 2005,12(4): 340-349. [10] SONG J J, SMITH S K,HANNON G J, et al.Crystal structure of Argonaute and its implications for RISC slicer activity[J]. Science, 2004, 305(5689): 1434-1437. [11] FRANK F,SONENBERG N,NAGAR B.Structural basis for 5'-nucleotide base-specific recognition of guide RNA by human AGO2[J]. Nature, 2010,465(7299): 818-822. [12] HAUPTMANN J,DUECK A,HARLANDER S, et al.Turning catalytically inactive human Argonaute proteins into active slicer enzymes[J]. Nat Struct Mol Biol, 2013, 20(7): 814-817. [13] KWAK P B,TOMARI Y.The N domain of Argonaute drives duplex unwinding during RISC assembly[J]. Nat Struct Mol Biol, 2012, 19(2): 145-151. [14] LISITSKAYA L,ARAVIN A A,KULBACHINSKIY A.DNA interference and beyond: Structure and functions of prokaryotic Argonaute proteins[J]. Nat Commun, 2018, 9(1): 5165. [15] HEGGE J W,SWARTS D C,VAN DER OOST J. Prokaryotic Argonaute proteins: Novel genome-editing tools?[J]. Nat Rev Microbiol, 2018, 16(1): 5-11. [16] WILLKOMM S,MAKAROVA K S,GROHMANN D.DNA silencing by prokaryotic Argonaute proteins adds a new layer of defense against invading nucleic acids[J]. FEMS Microbiol Rev,2018, 42(3):376-387. [17] DENLI A M,TOPS B B,PLASTERK R H,et al.Processing of primary microRNAs by the microprocessor complex[J]. Nature, 2004,432(7014): 231-235. [18] MEIJER H A,SMITH E M,BUSHELL M.Regulation of miRNA strand selection:Follow the leader?[J]. Biochem Soc Trans, 2014, 42(4): 1135-1140. [19] HUANG X,FEJES TOTH K,ARAVIN A A. piRNA biogenesis in drosophila melanogaster[J]. Trends Genet,2017,33(11): 882-894. [20] MUSSABEKOVA A,DAEFFLER L,IMLER J L.Innate and intrinsic antiviral immunity in Drosophila[J]. Cell Mol Life Sci,2017, 74(11): 2039-2054. [21] WANG Z,WANG Y,LIU T,et al.Effects of the PIWI/MID domain of Argonaute protein on the association of miRNAi's seed base with the target[J]. Rna,2019,25(5):620-629. [22] ROGERS K,CHEN X.Biogenesis, turnover, and mode of action of plant microRNAs[J]. Plant cell, 2013,25(7):2383-2399. [23] LAW J A,JACOBSEN S E.Establishing, maintaining and modifying DNA methylation patterns in plants and animals[J]. Nat Rev Genet,2010,11(3):204-220. [24] DOLATA J,BAJCZYK M,BIELEWICZ D,et al.Salt stress reveals a new role for ARGONAUTE1 in miRNA biogenesis at the transcriptional and posttranscriptional levels[J]. Plant Physiol,2016, 172(1): 297-312. [25] BA Z,QI Y.Small RNAs: Emerging key players in DNA double-strand break repair[J]. Sci China Life Sci,2013,56(10): 933-936. [26] HUTVAGNER G,ZAMORE P D.A microRNA in a multiple-turnover RNAi enzyme complex[J]. Science,2002,297(5589): 2056-2060. [27] CARBONELL A,FAHLGREN N,GARCIA-RUIZ H,et al.Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants[J]. Plant cell, 2012, 24(9): 3613-3629. [28] ARRIBAS-HERNANDEZ L,MARCHAIS A,POULSEN C,et al.The slicer activity of ARGONAUTE1 is required specifically for the phasing, not production, of trans-acting short interfering RNAs in Arabidopsis[J]. Plant cell,2016,28(7):1563-1580. [29] WILCZYNSKA A, BUSHELL M.The complexity of miRNA-mediated repression[J]. Cell Death Differ,2015,22(1):22-33. [30] IWAKAWA H O,TOMARI Y.The functions of microRNAs: mRNA decay and translational repression[J]. Trends Cell Biol, 2015, 25(11): 651-665. [31] ARRIBAS-LAYTON M,WU D,LYKKE-ANDERSEN J,et al.Structural and functional control of the eukaryotic mRNA decapping machinery[J]. Biochim Biophys Acta,2013,1829(6-7): 580-589. [32] FUKAO A,MISHIMA Y,TAKIZAWA N,et al.MicroRNAs trigger dissociation of eIF4AI and eIF4AII from target mRNAs in humans[J]. Mol Cell,2014,56(1):79-89. [33] DJURANOVIC S,NAHVI A,GREEN R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay[J]. Science,2012,336(6078): 237-240. [34] BRODERSEN P,SAKVARELIDZE-ACHARD L,BRUUN-RASMUSSEN M,et al.Widespread translational inhibition by plant miRNAs and siRNAs[J]. Science,2008,320(5880):1185-1190. [35] LI S,LIU L,ZHUANG X,et al.MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis[J]. Cell, 2013, 153(3): 562-574. [36] HOU C Y, LEE W C, CHOU H C, et al.Global analysis of truncated RNA ends reveals new insights into ribosome stalling in plants[J]. Plant cell, 2016, 28(10): 2398-2416. [37] VERDEL A,JIA S,GERBER S,et al.RNAi-mediated targeting of heterochromatin by the RITS complex[J]. Science,2004,303(5658): 672-676. [38] JIH G,LGLESIAS N, CURRIE M A, et al.Unique roles for histone H3K9me states in RNAi and heritable silencing of transcription[J]. Nature, 2017, 547(7664): 463-467. [39] HAAG J R,REAM T S,MARASCO M,et al.In vitro transcription activities of Pol IV, Pol V, and RDR2 reveal coupling of Pol IV and RDR2 for dsRNA synthesis in plant RNA silencing[J]. Mol Cell, 2012, 48(5): 811-818. [40] XIE Z X,JOHANSEN L K,GUSTAFSON A M, et al.Genetic and functional diversification of small RNA pathways in plants[J]. PLoS Biol, 2004, 2(5): e104. [41] ZHONG X,DU J,HALE CJ,et al.Molecular mechanism of action of plant DRM de novo DNA methyltransferases[J]. Cell,2014, 157(5): 1050-1060. [42] DUAN C G, ZHANG H, TANG K, et al.Specific but interdependent functions for Arabidopsis AGO4 and AGO6 in RNA-directed DNA methylation[J]. Embo J,2015,34(5): 581-592. [43] MCCUE A D,PANDA K, NUTHIKATTU S, et al.ARGONAUTE 6 bridges transposable element mRNA-derived siRNAs to the establishment of DNA methylation[J]. Embo J, 2015, 34(1): 20-35. [44] MAKAROVA K S, WOLF Y I, VAN DER OOST J, et al. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements[J]. Biol Direct,2009, 4: 29. [45] CARBONELL A,CARRINGTON J C.Antiviral roles of plant ARGONAUTES[J]. Curr Opin Plant Biol, 2015, 27: 111-117. [46] FANG X,QI Y.RNAi in plants:An Argonaute-centered view[J]. Plant cell, 2016, 28(2): 272-285. [47] SZITTYA G,BURGYAN J.RNA interference-mediated intrinsic antiviral immunity in plants[J]. Curr Top Microbiol Immunol, 2013, 371: 153-181. [48] MINOIA S,CARBONELL A,DI SERIO F,et al.Specific Argonautes selectively bind small RNAs derived from potato spindle tuber viroid and attenuate viroid accumulation in vivo[J]. J Virol, 2014, 88(20): 11933-11945. [49] BROSSEAU C,EL OIRDI M,ADUROGBANGBA A, et al.Antiviral defense involves AGO4 in an Arabidopsis-potexvirus interaction[J]. Mol Plant Microbe Interact,2016, 29(11): 878-888. [50] CARBONELL A.Plant ARGONAUTEs: Features, functions, and unknowns[J]. Methods Mol Biol, 2017, 1640: 1-21. [51] WU L,ZHANG Q,ZHOU H, et al.Rice microRNA effector complexes and targets[J]. Plant cell, 2009, 21(11): 3421-3435. [52] YANG L,HUANG W,WANG H,et al.Characterizations of a hypomorphic Argonaute1 mutant reveal novel AGO1 functions in Arabidopsis lateral organ development[J]. Plant Mol Biol,2006,61(1-2): 63-78. [53] LYNN K,FERNANDEZ A,AIDA M,et al.The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene[J]. Development, 1999, 126(3): 469-481. [54] ZHU H, HU F, WANG R, et al.Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development[J]. Cell, 2011, 145(2): 242-256. [55] BORGES F,MARTIENSSEN R A.The expanding world of small RNAs in plants[J]. Nat Rev Mol Cell Biol,2015,16(12): 727-741. [56] NONOMURA K,MOROHOSHI A,NAKANO M,et al.A germ cell specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice[J]. Plant cell, 2007, 19(8): 2583-2594. [57] OLMEDO-MONFIL V,DURAN-FIGUEROA N,ARTEAGA-VA ZQUEZ M, et al. Control of female gamete formation by a small RNA pathway in Arabidopsis[J]. Nature,2010,464(7288): 628-632. [58] SINGH M,GOEL S,MEELEY R B,et al.Production of viable gametes without meiosis in maize deficient for an ARGONAUTE protein[J]. Plant cell, 2011,23(2): 443-458. [59] ZHENG S,LI J,MA L,et al.OsAGO2 controls ROS production and the initiation of tapetal PCD by epigenetically regulating OsHXK1 expression in rice anthers[J]. Proc Natl Acad Sci USA, 2019,116(15): 7549-7558. |