湖北农业科学 ›› 2020, Vol. 59 ›› Issue (7): 131-135.doi: 10.14088/j.cnki.issn0439-8114.2020.07.027

• 资源·环境 • 上一篇    下一篇

唐山市雷暴潜势预报研究

柴瑞1, 曹晓霞1, 王爱军1, 王冠1,2, 苗国荣1, 徐健鹏1   

  1. 1.唐山市气象局,河北 唐山063000;
    2.成都信息工程大学,成都610200
  • 收稿日期:2019-04-10 发布日期:2020-06-28
  • 作者简介:柴瑞(1983-),男,河北衡水人,硕士,主要从事气象业务科技服务工作,(电话)18617529850(电子信箱)13786687@qq.com。

Study on thunderstorm potential forecast in Tangshan city

CHAI Rui1, CAO Xiao-xia1, WANG Ai-jun1, WANG Guan1,2, MIAO Guo-rong1, XU Jian-peng1   

  1. 1. Tangshan City Meteorological Bureau, Tangshan 063000, Hebei,China;
    2. Chengdu University of Information Technology, Chengdu 610200, China
  • Received:2019-04-10 Published:2020-06-28

摘要: 利用2015—2017年6—8月的552个探空样本,结合唐山市气象局为中心、半径50 km范围内的闪电定位资料,应用动态聚类方法将唐山市区及周边的雷暴情况分为3类(分别记为1类、2类、3类),并应用雷达回波与闪电叠加资料验证了该分类的可靠性;用逐步选择法和逐步回归法探空样本中的对流参数进行筛选,将筛选出的与雷暴有密切关系的对流参数作为预报因子做主成分分析,给出预报因子与雷暴关系的相应解释,最后应用Bayes判别分析与Logistic回归判别雷暴潜势预报方法建立模型进行雷暴预报,得出预报方程,并在Logistic回归判别法中给出3类的预报概率,发现这2种方法对唐山市区雷暴的预报准确率都到达了70%以上,对唐山市区雷暴的预报有一定的参考作用。

关键词: 雷暴, 对流参数, 动态聚类, Bayes判别, Logistic回归判别, 唐山市

Abstract: Combining the 552 radio sound observations during June and August from 2015 to 2017 with the lightning location information within a range of 50 km around Tangshan, this article applies dynamic clustering method to classify thunderstorm occurance in Tangshan district into three categories (as category 1, 2, 3). The reliability of the categories is verified with overlay of lightning location information onto radar echo PPI. Ten convective parameters associated with each radio sound observation are filtrated by the means of gradual selection and stepwise regression method. The convective parameters, which are closely related to thunderstorms, are selected as the forecasting parameters and are used for principal component analysis so that an explanation on the relationship between the factors and thunderstorm is given. Finally for the potential prediction of thunderstorms, Bayes discriminant and Logistic regression discriminant are deployed to establish prediction models and Logistic regression discriminant can also provide the probability of the three categories. The results show that the forecast accuracy of the methods mentioned above are better than 70 percent and might be used as a reference in the specified district.

Key words: thunderstorm, convective parameters, dynamic clustering, Bayes discriminant, Logistic regression discriminant, Tangshan city

中图分类号: