湖北农业科学 ›› 2018, Vol. 57 ›› Issue (24): 151-155.doi: 10.14088/j.cnki.issn0439-8114.2018.24.041

• 农业工程 • 上一篇    下一篇

不同微生物作用下玉米叶片含水量高光谱定量估测

解文武   

  1. 陕西地建土地勘测规划设计院有限责任公司,西安 710075
  • 收稿日期:2018-06-29 出版日期:2018-12-25 发布日期:2020-04-01
  • 作者简介:解文武(1989-),男,河北邯郸人,硕士,主要从事高光谱遥感及测绘技术方面的研究,(电话)18392505952(电子信箱)852287211@qq.com。

Quantitative Estimation of Water Content of Maize Leaves under the Action of Different Types of Microorganism

XIE Wen-wu   

  1. Land Surveying, Planning and Design Institute of Shaanxi Provincial Land Engineering Construction Group, Xi’an 710075, China
  • Received:2018-06-29 Online:2018-12-25 Published:2020-04-01

摘要: 通过测定盆栽试验条件下不同微生物作用的玉米植株叶片高光谱反射率并对其叶片含水量进行差异分析,探讨不同微生物作用对植被叶片含水量的影响及其光谱特征变化,并尝试利用高光谱遥感技术对不同处理条件下玉米叶片含水量进行监测识别。结果表明,叶片含水量最佳估测模型中,CK处理预测模型Y=0.839×[exp(0.006 t)]预测精度最高,决定系数(R2)达0.851,RMSE为0.018,G.m处理预测模型Y=0.84-100.128 t-166 349.654 t2预测精度最低,决定系数(R2)为0.638,RMSE为0.013。不同处理所建模型均可实现相应叶片含水量的有效预测,为微生物复垦领域对不同微生物作用下植被叶片含水量的快速高效无损监测与评价提供了信息支持。

关键词: 高光谱遥感, 微生物复垦, 叶片含水量, 估测模型

Abstract: By measuring the hyperspectral reflectance of maize plant leaves with different types of microorganism under the condition of pot experiment, the difference of the leaf water content was analyzed,Investigate the effect of different microorganisms on the water content of vegetation and the change of its spectral characteristics,and tried to use hyperspectral remote sensing technology to monitor and identify the water content of maize leaves under different treatment conditions. The results show that the CK prediction model Y=0.839×[exp(0.006 t)] has the highest prediction accuracy in the best estimation model of the leaf water content, the coefficient of determination is 0.851,RMSE is 0.018,the prediction precision of G.m processing model Y=0.84-100.128 t-166 349.654 t2 is the lowest, the coefficient of determination R2 is 0.638,RMSE is 0.013. The models constructed by different treatments can effectively predict the water content of the corresponding leaves,in the field of microbial reclamation,information support is provided for the rapid and efficient monitoring and evaluation of the water content of vegetation leaves under the action of different types of microorganism.

Key words: hyperspectral remote sensing, microbial reclamation, leaf water content, estimation model

中图分类号: